1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn") < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 00:40 Di 23.03.2004 | Autor: | Stefan |
Kurt fährt mit der Straßenbahn eine lange gerade Straße entlang. Plötzlich sieht er seinen Freund auf gleicher Höhe in entgegengesetzter Richtung auf dieser Straße gehen. Nach einer Minute hält die Straßenbahn. Kurt steigt aus und läuft doppelt so schnell wie sein Freund, jedoch nur mit einem Viertel der Durchschnittgeschwindigkeit der Straßenbahn hinter seinem Freund her. Nach wieviel Minuten holt er ihn ein?
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:50 Di 23.03.2004 | Autor: | Niob |
Guten Abend zusammen
Ich habe mir erstmal eine Zeichnung gemacht, wie das wohl aussehen soll.
Danach kam ich auf die "Idee", dass man dies doch auch in einem Koordinatenkreuz einzeichnen könnte.
Vorher habe ich mir aber gesagt, dass:
Die Bahn in 1 Minute 100m fährt (etwas unlogisch, aber lassen wir es mal so)
Der Kurt $1/4$ so schnell ist wie die Bahn, also in 1 Minute 25m "läuft".
Der Freund $1/2$ so schnell ist wie Kurt, und somit in 1 Minute 12,5m geht.
Dann habe ich mir meine Koordinatenachse gezeichnet. $x$ sei die Zeit in Minuten, $y$ sei die Strecke in Meter.
Der Freund beginnt bei 0 Metern und 0 Minuten. Er erreicht nach 1 Minute (wie schon gesagt) 12,5m. So kann ich mir die Gleichung aufstellen:
$y = 12,5 x$
Kurt müsste eigentlich nach 1 Minute (x = 1) starten, aber um die Formel [für mich] zu vereinfachen, habe mir mir ausgerechnet, wo Kurt bei "0 Minuten" gewesen wäre (In 1 Minute "läuft" er 25m, also 100m - 25m).
So habe ich dann diese Formel aufgestellt: $y = 25x - 125 [meter] $.
Setze ich beide Gleichungen gleich, kommt am Schluss $x = 10$ raus, Kurt und sein Freund treffen sich also nach $10$ Minuten. (gerechnet, seitdem Kurt den Freund in der Bahn gesehen hat).
Wahrscheinlich habe ich das jetzt etwas kompliziert gerechnet, aber ich hoffe mal, dass es trotzdem richtig ist. Kann ich eigentlich einfach so irgendwelche Streckenangaben angeben? Ich habe nicht auspobiert, ob bei anderen Werten das gleiche Ergebnis herauskommt.
Ich bin mal auf Kommentare gespannt
Gruß, Niob
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:36 Di 23.03.2004 | Autor: | Stefan |
Lieber Niob!
Ja, deine Lösung ist richtig, aber man kann sie auch ohne konkrete Annahmen über die Geschwindigkeiten rechnen. Nehmen wir einmal an die Geschwindigkeit der Bahn sei [mm]v_0[/mm], dann ist die Geschwindigkeit von Kurt gerade [mm]\frac{1}{4}\, v_0[/mm] und die Geschwindigkeit des Freundes [mm]\frac{1}{8}\, v_0[/mm].
Nun starten beide im Nullpunkt. Stell dir vor, dass der Freund "in die Richtung der positiven Zahlen" läuft. Dann ist die Strecke, die der Freund in [mm]t[/mm] Minuten läuft, gerade
[mm]\frac{1}{8}\, v_0[/mm].
Die Strecke, die Kurt läuft, ist gerade (weil er erst eine Minute lang mit der Geschwindigkeit [mm]v_0[/mm] in die "Richtung der negativen Zahlen fährt" und dann [mm]t-1[/mm] Minuten lang mit der Geschwindigkeit [mm]\frac{1}{4}\, v_0[/mm] in die "Richtung der positiven Zahlen" läuft):
[mm]-v_0 \cdot 1+ \frac{1}{4}\, v_0\cdot (t-1)[/mm].
Gesucht ist also dasjenige [mm]t[/mm], für das
[mm]\frac{1}{8}\, v_0 \cdot = -v_0 + \frac{1}{4}\, v_0 \cdot (t-1)[/mm]
gilt. Löst man das dann nach [mm]t[/mm] auf, erhält man [mm]t=10[/mm].
Liebe Grüße
Stefan
|
|
|
|