matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R11. Ableitung der Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - 1. Ableitung der Funktion
1. Ableitung der Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Di 10.04.2012
Autor: lucy.mg

Aufgabe
Berechnen Sie die 1. Ableitung der Funktion f(x) = [mm] \wurzel[3]{cos (\bruch{x}{3})} [/mm]

Hallöchen, ich bin neu hier ^^

Hab erst vor paar Wochen mit meinem Studium angefangen, und stoße schon auf meine ersten Matheprobleme.

Leider konnte ich die ersten Vorlesungen aus krankheitsgründen nicht besuchen, und hab leider ÜBERHAUPT KEINE AHNUNG wie ich diese Aufgabe zu lösen habe.

Ich hab schon in den Forenregeln gelesen, dass logischerweise eigene Lösungsansaätze Vorrausetzung ist, und ihr mir somit weiterhelft.

Wäre es für euch vielleicht in Ordnung wenn wir diese Aufgabe komplett zusammenlösen. Wie gesagt ich weiss leider gar nicht wie ich hier rechnen muss. Weiss jemand von euch schonmal der Anfang dieser Aufgabe ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Mit einem freundlichen Umgang erreichst du eher, dass sich eines unserer Mitglieder deines Problems annimmt.
Bedenke, dass die Helfer hier in ihrer Freizeit unentgeltlich tätig sind.






        
Bezug
1. Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Di 10.04.2012
Autor: MathePower

Hallo lucy.mg,


[willkommenmr]


> Berechnen Sie die 1. Ableitung der Funktion f(x) =
> [mm]\wurzel[3]{cos (\bruch{x}{3})}[/mm]
>  Hallöchen, ich bin neu
> hier ^^
>  
> Hab erst vor paar Wochen mit meinem Studium angefangen, und
> stoße schon auf meine ersten Matheprobleme.
>  
> Leider konnte ich die ersten Vorlesungen aus
> krankheitsgründen nicht besuchen, und hab leider
> ÜBERHAUPT KEINE AHNUNG wie ich diese Aufgabe zu lösen
> habe.
>  
> Ich hab schon in den Forenregeln gelesen, dass
> logischerweise eigene Lösungsansaätze Vorrausetzung ist,
> und ihr mir somit weiterhelft.
>  
> Wäre es für euch vielleicht in Ordnung wenn wir diese
> Aufgabe komplett zusammenlösen. Wie gesagt ich weiss
> leider gar nicht wie ich hier rechnen muss. Weiss jemand
> von euch schonmal der Anfang dieser Aufgabe ?
>  


Für die Ableitung ist die Kettenregel
in Verbindung mit der Potenzregel anzuwenden.

Schreibe dazu die Funktion gemäß den Potenzgesetzen um,
siehe dazu unter Bemerkungen.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. Mit einem freundlichen Umgang
> erreichst du eher, dass sich eines unserer Mitglieder
> deines Problems annimmt.
>  Bedenke, dass die Helfer hier in ihrer Freizeit
> unentgeltlich tätig sind.
>  



Gruss
MathePower

Bezug
                
Bezug
1. Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 10.04.2012
Autor: lucy.mg


>  
>
> [willkommenmr]
>  
>
> > Berechnen Sie die 1. Ableitung der Funktion f(x) =
> > [mm]\wurzel[3]{cos (\bruch{x}{3})}[/mm]
>  >  Hallöchen, ich bin
> neu
> > hier ^^
>  >  
> > Hab erst vor paar Wochen mit meinem Studium angefangen, und
> > stoße schon auf meine ersten Matheprobleme.
>  >  
> > Leider konnte ich die ersten Vorlesungen aus
> > krankheitsgründen nicht besuchen, und hab leider
> > ÜBERHAUPT KEINE AHNUNG wie ich diese Aufgabe zu lösen
> > habe.
>  >  
> > Ich hab schon in den Forenregeln gelesen, dass
> > logischerweise eigene Lösungsansaätze Vorrausetzung ist,
> > und ihr mir somit weiterhelft.
>  >  
> > Wäre es für euch vielleicht in Ordnung wenn wir diese
> > Aufgabe komplett zusammenlösen. Wie gesagt ich weiss
> > leider gar nicht wie ich hier rechnen muss. Weiss jemand
> > von euch schonmal der Anfang dieser Aufgabe ?
>  >  
>
>
> Für die Ableitung ist die
> Kettenregel
>  in
> Verbindung mit der
> Potenzregel
> anzuwenden.
>  
> Schreibe dazu die Funktion gemäß den
> Potenzgesetzen
> um,
>  siehe dazu unter Bemerkungen.

Hallo Mathepower,
du hast geschrieben siehe dazu unter Bemerkungen welche Bemerkungen meinst du?

> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt. Mit einem freundlichen Umgang
> > erreichst du eher, dass sich eines unserer Mitglieder
> > deines Problems annimmt.
>  >  Bedenke, dass die Helfer hier in ihrer Freizeit
> > unentgeltlich tätig sind.
>  >  
>
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
1. Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Di 10.04.2012
Autor: schachuzipus

Hallo,


> >  in

> > Verbindung mit der
> > Potenzregel
> > anzuwenden.
>  >  
> > Schreibe dazu die Funktion gemäß den
> > Potenzgesetzen
> > um,
>  >  siehe dazu unter Bemerkungen.
>  
> Hallo Mathepower,
>  du hast geschrieben siehe dazu unter Bemerkungen welche
> Bemerkungen meinst du?
>  

Ja, ist das zu glauben?  Wenn du auf den link klickst und ein klitzekleines Stückchen runterscrollst, steht da dick und fett unter "Bemerkungen": ...

... das, was du brauchst ...

Gruß

schachuzipus


Bezug
                                
Bezug
1. Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 10.04.2012
Autor: lucy.mg

Wäre die Lösung der Aufgabe
f(x) = [mm] \wurzel[3]{cos (\bruch{x}{3})} [/mm] folgendermaßen richtig?

3 * [mm] \wurzel{cos(\bruch{x}{3})} [/mm]

[mm] \bruch{3}{2* \wurzel{cos\bruch{x}{3}}} [/mm] * cos [mm] \bruch{x}{3} [/mm]

- [mm] \bruch{3* sin \bruch{x}{3} }{2*\wurzel{cos(\bruch{x}{3})} } [/mm] * [mm] \bruch{x}{3} [/mm]



[mm] \bruch{- sin \bruch{x}{3}}{9 * cos\bruch{x}{3}^{\bruch{2}{3}} } [/mm]


Kann jemand von euch bitte genau drüber gucken ob das so richtig ist ? Gegebenfalls mit rot korrigieren ?

Bezug
                                        
Bezug
1. Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Di 10.04.2012
Autor: MathePower

Hallo lucy.mg,


> Wäre die Lösung der Aufgabe
> f(x) = [mm]\wurzel[3]{cos (\bruch{x}{3})}[/mm] folgendermaßen
> richtig?
>  
> 3 * [mm]\wurzel{cos(\bruch{x}{3})}[/mm]
>  
> [mm]\bruch{3}{2* \wurzel{cos\bruch{x}{3}}}[/mm] * cos [mm]\bruch{x}{3}[/mm]
>  
> - [mm]\bruch{3* sin \bruch{x}{3} }{2*\wurzel{cos(\bruch{x}{3})} }[/mm]
> * [mm]\bruch{x}{3}[/mm]
>  
>
>
> [mm]\bruch{- sin \bruch{x}{3}}{9 * cos\bruch{x}{3}^{\bruch{2}{3}} }[/mm]
>  


Besser so:

[mm]\bruch{- sin\left( \bruch{x}{3}\right)}{9 * \left( \ cos\left(\bruch{x}{3}\right) \ \right)^{\bruch{2}{3}} }[/mm]

Das ist richtig. [ok]


>
> Kann jemand von euch bitte genau drüber gucken ob das so
> richtig ist ? Gegebenfalls mit rot korrigieren ?


Gruss
MathePower

Bezug
                                                
Bezug
1. Ableitung der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Di 10.04.2012
Autor: lucy.mg

Yeeeaaaahhhh es ist richtig ^^ Vielen dank für die Kontrolle

Bis dann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]