matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung1. Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - 1. Ableitung
1. Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 06.07.2006
Autor: Thome

Aufgabe 1
Berechnen Sie jeweils die erste Ableitung für die folgenden Funktionen.
Das Ergebnis ist vereinfacht unzuformen.

f(x) = [mm] \bruch{(\wurzel{x}-1)²}{x} [/mm]

Aufgabe 2
f(x) = [mm] x*sin(x)-\bruch{1}{2}*x²*cos(x) [/mm]

Aufgabe 3
f(x) = [mm] \bruch{ln(x)+x}{e^x} [/mm]

Aufgabe 4
f(x) = (tan(x³+2))²

Hi,

ich habe die vier Aufgaben mal durchgerechnet und wollte fragen ob die so richtig sind?
Währe sehr nett wenn die jemand mal nachrechnen könnte!

Aufgabe 1: f'(x) = [mm] \bruch{\wurzel{x}-1}{x²} [/mm]

Aufgabe 2: f'(x) = [mm] (1+\bruch{x²}{2})*sin(x) [/mm]

Aufgabe 3: f'(x) = [mm] \bruch{\bruch{1}{x}+1-ln(x)-x}{e^x} [/mm]

Aufgabe 4: f'(x) = [mm] 2*tan(x³+2)*\bruch{1}{cos²(x³+2)} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
1. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Do 06.07.2006
Autor: Desiderius

Hallo!

Bei der ersten hast du einen Fehler gemacht, da hast du die Quotientenregel nicht ordentlich angewandt oder die Produktregel, je nach dem wie du es gerechnet hast.
Also hier meine Lösung.

[mm] f(x)=\bruch{(\wurzel{x}-1)^{2}}{x} [/mm] da löse ich erstmal oben die Klammer auf.

[mm] f(x)=\bruch{x-2\wurzel{x}+1}{x} [/mm]  das schreib ich nun auseinander

[mm] f(x)=\bruch{x}{x}-\bruch{2\wurzel{x}}{x}+\bruch{1}{x} [/mm] das rechne ich nun aus

[mm] f(x)=1-2x^{-\bruch{1}{2}}+x^{-1} [/mm] und das kann man nun ganz einfach ableiten und muss nicht auf irgendwelche Regeln achten.

[mm] f'(x)=x^{-\bruch{3}{2}}-x^{-2} [/mm]

Bei der 2. und 3. Funktion habe ich die selbe Ableitung heraus, wie du.

Bei der 4. habe ich wieder einen Fehler entdeckt, der aber nicht so schwerwiegend ist, du hast nur nicht beachtet, dass du die innere Funktion noch nach der Kettenregel ableiten musst.

Die Ableitung von [mm] \tan(x^{3}+2) [/mm] ist nicht [mm] \bruch{1}{\cos²(x³+2)}, [/mm] sondern [mm] \bruch{3\cdot{}x²}{\cos²(x³+2)} [/mm]

und somit ist die Ableitung der 4. Funktion

[mm] f'(x)=2\cdot{}(\tan(x³+2))\cdot{}\bruch{3x²}{\cos²(x³+2)} [/mm]

Ich hoffe ich habe mich nicht wieder verrechnet, aber ich denke mal, das jetzt alles stimmt.

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]