1-alpha konfidenzintervall < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm]X_1,...,X_n[/mm] unabhängig und gleichverteilt auf [mm](0;\theta)[/mm]. Zeige, dass für alle [mm] \lambda_1 , \lambda_2[/mm] mit [mm]0<\lambda_1<\lambda_2<1[/mm] und [mm]\lambda_2^n-\lambda_1^n = 1-\alpha [/mm] durch [mm] \frac{M}{\lambda_2}, \frac{M}{\lambda_1}[/mm] ein [mm]1-\alpha[/mm] Konfidenzintervall gegeben ist(wobei [mm] M = max(X_1,..,X_n)[/mm]. |
Hi,
ich habe so meine Probleme mit der obigen Aufgabe.
Ich weiß, wie man ein Konfidenzintervall für vorgegebenes Alpha berechnet. Ich laufe, wenn ich diese Aufgabe analog angehe, allerdings vor Probleme, dass ich nicht weiß, was genau ich eigentlich zeigen soll.
Mein bisheriger Ansatz war es, den zentralen Grenzwertsatz zu verwenden und so die Intervallgrenzen zu bestimmen. Dafür hab ich mir einen Schätzer hergenommen, hab den Erwartungswert über die Gleichverteilung bestimmt, und hab die Varianz ausgerechnet. Wenn ich die Daten jetzt in die Formel einsetze, kriege ich ein (allgemeines) Intervall raus.
Da Ich dabei nicht wirklich weiter gekommen bin, hab ich das ganze mal anders herum versucht und bin von der Normalverteilung ausgegangen und hab dann eingesetzt, was allerdings auch nicht wirklich funktioniert hat.
Ich hab anderswo eine ähnliche Aufgabe gesehen, wo der Ansatz gemacht wurde, die folgende Wahrscheinlichkeit zu bestimmen:
[mm]P(M < \lambda\theta)[/mm] und [mm]P(\lambda_2\theta < M < \lambda_1 \theta)[/mm]
Ich wäre euch sehr dankbar, wenn mir jemand erklären könnte, was ich hier genau machen muss.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:35 Di 24.01.2017 | Autor: | luis52 |
Moin, bestimme zunaechst die Verteilung von $M$ ...
|
|
|
|