matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstiges1-Form integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - 1-Form integrieren
1-Form integrieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1-Form integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 18.04.2010
Autor: matzekatze

Hi,

Es sei [mm]\omega[/mm] die 1-Form auf [mm]\IR^2\ \{(0,0)}[/mm] definiert durch:

[mm]\omega = \frac{-y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy[/mm]

Ich soll das Integral [mm]\int_{C} \omega[/mm] für einen beliebigen Kreis mit Radius r bilden.

Nun würde ich einfach [mm]\omega[/mm] einsetzen:

[mm]\int_{C} \frac{-y}{x^2+y^2}dx + \int_{C} \frac{x}{x^2+y^2}dy[/mm]

Wie muss ich dann weiter vorgehen?

Danke schonmal

        
Bezug
1-Form integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 So 18.04.2010
Autor: Kroni

Hi,

jetzt kannst du doch den Kreis parametrisieren mit Hilfe eines Winkels, und das dann in die Parametrisierung einsetzen, wo man dann letztendlich ueber den Winkel von $0$ bis [mm] $2\pi$ [/mm] integriert. Dazu muss man dann das Differential [mm] $\mathrm{d}x$ [/mm] und [mm] $\mathrm{d}y$ [/mm] auch umschreiben.

LG

Kroni

Bezug
                
Bezug
1-Form integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 18.04.2010
Autor: matzekatze

Hi Kroni,

danke für deine Antwort, ok, ich nehme als Parametrisierung die Polarkoordinaten:

[mm]\int_{C} \frac{- sin(t)}{r}dx + \int_{C} \frac{cos(t)}{r}dy[/mm]

Und das folgt zu:

[mm]\int_{C} sin^2(t)dt + \int_{C} cos^2(t)dt[/mm]

Kann ich das nun einfach ausrechnen? Was mich irritiert ist, das C ja eigentlich ne Fläche ist und ich aber kein Flächenintegral ausrechne.

Danke schonmal

Bezug
                        
Bezug
1-Form integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 18.04.2010
Autor: Kroni

Hi,

wenn du dich nicht verrechnet hast, geht das so, ja.

Wer sagt, dass [mm] $\mathcal{C}$ [/mm] ne Flaeche sein soll? Wenn man ueber eine 1-Form integriert, ists doch 'natuerlich', ueber einen Weg [mm] $\mathcal{C}$ [/mm] zu integrieren. Wenn man ueber eine Flaeche im [mm] $\mathbb R^2$ [/mm] integrieren, so braucht man doch eine $2$-Form.

Achso, hier noch ein bisschen was zur $1$-Form:

[]Pfaff'sche Form

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]