matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis1-Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - 1-Form
1-Form < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1-Form: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:55 Sa 16.07.2005
Autor: Bastiane

Hallo!
Hier noch eine schöne Klausuraufgabe:

Es sei [mm] G:=\IR^2\backslash\{x\le 0, y=0\}. [/mm] Betrachten Sie die 1-Form

[mm] \omega:= \bruch{-ydx+xdy}{x^2+y^2} [/mm] für [mm] (x,y)\in [/mm] G.

a) Zeigen Sie: [mm] \omega [/mm] ist geschlossen.
b) Folgern Sie aus a): [mm] \omega [/mm] ist exakt.
c) Geben Sie eine Stammform zu [mm] \omega [/mm] an.

Also, bei a wusste ich leider nicht mehr so wirklich, wie man das macht. Irgendwas war da doch, dass das Integral bei geschlossenen 1-Formen über geschlossene Kurven =0 ist oder so? Aber würde es dann reichen, über eine geschlossene Kurve zu integrieren oder muss das für alle gelten?

b) habe ich glaube ich nicht aus a) gefolgert, sondern so begründet: [mm] \omega [/mm] ist exakt, wenn [mm] \omega [/mm] eine Stammfunktion besitzt, und es existiert eine Stammfunktion, wenn (ich wusste nicht mehr so ganz, wie man das schreibt...): [mm] \bruch{\partial{\bruch{-y}{x^2+y^2}}}{\partial{y}} [/mm] = [mm] \bruch{\partial{\bruch{x}{x^2+y^2}}}{\partial{x}} [/mm]

Das habe ich dann berechnet und es kam hin!

Aber bei c habe ich leider keine Stammfunktion gefunden. Ich habe so angefangen:

[mm] \integral{\bruch{x}{x^2+y^2}dy} [/mm] oder muss es [mm] \integral{\bruch{x}{x^2+y^2}dx} [/mm] sein? Dann wäre es einfach...

Kann mir jemand sagen, was die Stammfunktion hierzu ist?

Und was ist dann die Stammfunktion für [mm] \omega? [/mm]

Viele Grüße
Bastiane
[cap]






        
Bezug
1-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Sa 16.07.2005
Autor: Micha

Hallo Bastiane!

Für geschlossenheit musst du zeigen, dass die Cartansche Ableitung 0 ist... :-)

Die Exaktheit kannst du mit der Existenz einer Stammfunktion zeigen.

Gruß Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]