matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorie0 - 1 - Gesetze
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - 0 - 1 - Gesetze
0 - 1 - Gesetze < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

0 - 1 - Gesetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Mo 14.12.2009
Autor: Irmchen

Guten Abend alle zusammen!

Ich beschäftige mich gerade mit dem Buch " Wahrscheinlichkeitstheorie" von Bauer und genau genommen mit dem § 11 Null-Eins-Gesetze.
Ich habe Schwierigkeiten den folgenden Sachverhalt ganz zu verstehen..

Gegeben sei eine beliebige Folge  [mm] (A_n)_{n \in \mathbb N } [/mm] von Ereignissen. Dann gilt die Implikation

[mm] \summe_{n=1}^{\infty} P (A_n) < \infty \ \Rightarrow \ P ( \limsup_{ n \to \infty } A_n ) = 0 [/mm]

Warum ist die Wahrscheinlichkeit 0 ?

Als Begründung im Buch steht :

Sezt man [mm] A:= \limsup_{ n \to \infty } A_n [/mm], so gilt
[mm] A \subset \bigcup_{i=n}^{\infty} A_i [/mm] und somit
[mm] P (A) \le \summe_{i=n}^{\infty} P (A_i).. [/mm]
Und damit folgt die Behauptung.

Ich verstehe nicht, warum daraus folgt, dass [mm] P ( \limsup_{ n \to \infty } A_n ) = 0 [/mm].

Vielen Dank!

Viele Grüße
Irmchen

        
Bezug
0 - 1 - Gesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Mo 14.12.2009
Autor: dormant

Hi!

> Guten Abend alle zusammen!
>  
> Ich beschäftige mich gerade mit dem Buch "
> Wahrscheinlichkeitstheorie" von Bauer und genau genommen
> mit dem § 11 Null-Eins-Gesetze.
>  Ich habe Schwierigkeiten den folgenden Sachverhalt ganz zu
> verstehen..
>  
> Gegeben sei eine beliebige Folge  [mm](A_n)_{n \in \mathbb N }[/mm]
> von Ereignissen. Dann gilt die Implikation
>  
> [mm]\summe_{n=1}^{\infty} P (A_n) < \infty \ \Rightarrow \ P ( \limsup_{ n \to \infty } A_n ) = 0[/mm]

Zur Info - das nennt sich das (erste) Lemma von Borel-Cantelli. Ich weiß nicht was im Bauer steht, zu WTheorie würde ich das Buch von Meintrup, oder evtl. das von Klenke empfehlen.
  

> Warum ist die Wahrscheinlichkeit 0 ?
>  
> Als Begründung im Buch steht :
>  
> Sezt man [mm]A:= \limsup_{ n \to \infty } A_n [/mm], so gilt
>  [mm]A \subset \bigcup_{i=n}^{\infty} A_i[/mm] und somit
> [mm]P (A) \le \summe_{i=n}^{\infty} P (A_i)..[/mm]
>  Und damit folgt
> die Behauptung.

Der Beweis ist auf dem Englischen Wiki ganz gut:

[mm] \IP(\limsup_{n\to\infty} A_N)=\IP(\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}A_n)\le\inf_{N\ge 1}\IP(\bigcup_{n=N}^{\infty}A_n)\le\inf_{N\ge 1}\summe_{n=N}^{\infty}\IP(A_n)=0. [/mm]

Zu jedem Schritt:
i) Definition von LimSup über Mengen;
ii) Monotonie des Maßes [mm] \IP; [/mm]
iii) [mm] \sigma [/mm] -subadditivität des Maßes;
iv) Nach Voraussetzung, da [mm] \IP(A_n) [/mm] Nullfolge sein muss.

>  
> Ich verstehe nicht, warum daraus folgt, dass [mm]P ( \limsup_{ n \to \infty } A_n ) = 0 [/mm].
>  
> Vielen Dank!
>  
> Viele Grüße
>  Irmchen


Gruß,
dormant

Bezug
                
Bezug
0 - 1 - Gesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mo 14.12.2009
Autor: Irmchen

Danke!

Den Beweis hatte ich kurz bevor ich den Beitrag gelesen habe gefunden und auch alle Unklarheiten somit beseitigt!

Vielen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]