matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" -
< Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2. Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 08.02.2005
Autor: Sue20

Gebeben ist die Gerade [mm] \vektor{x \\ y \\ z} [/mm] = [mm] \vektor{1 \\ 0 \\ 0} [/mm] + [mm] t\vektor{-1 \\ 0 \\ 1} [/mm] .
Welchen Abstand hat [mm] P_{0} [/mm] (0,1,1) von g?
Lösung: h = 1

Bei mir kommt etwas anderes heraus:

h = [mm] \bruch{|\vec{c}*\vec{a}|}{|\vec{a}|} [/mm]

[mm] |\vec{a}| [/mm] = [mm] \wurzel{(-1)² + 0² + 1²} [/mm] = [mm] \wurzel{2} [/mm]

[mm] \vec{c} [/mm] = [mm] \overrightarrow{P_{1}P_{0}} [/mm] = [mm] \vektor{-1 \\ 1 \\ 1} [/mm]

h =  [mm] \bruch{|-1*(-1)+1*0+1*1|}{\wurzel{2}} [/mm]

=  [mm] \bruch{2}{\wurzel{2}} [/mm]

Was hab ich falsch gemacht?

Über jede Hilfe wäre ich sehr dankbar!

MfG Sue

        
Bezug
Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Di 08.02.2005
Autor: pjoas

Hallo,

wenn mit

[mm] ${|\vec{c}\cdot{}\vec{a}|}$ [/mm] der Betrag des Vektorproduktes gemeint ist dann liegt hier ein Rechenfehler vor, da
[mm] $\vec{c}\cdot{}\vec{a} [/mm] = [mm] \vektor{1 \\ 0 \\ 1} [/mm] $ wird und der Betrag dieses resultierenden Vektors wieder [mm] $\wurzel{2}$ [/mm] wird.


Gruß, Patrick

Bezug
                
Bezug
Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 08.02.2005
Autor: Sue20

Achso.
Aber die Formel stimmt, oder? Ich dachte schon, darin liegt der Fehler.

Bezug
                        
Bezug
Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Di 08.02.2005
Autor: pjoas

sorry - ich denke, da ist ein Fehler drinne... was ich oben geschrieben habe stimmt nur insofern, als dass ich deine Formeln nicht kannte - dann könnte es nur am Produkt liegen - aber nach ein bisschen überlegen ist mir klar geworden, dass wir beide mehr oder minder uns auf dem Holzweg befinden.
Ich hab dir in einer zusätzlichen Mitteilung einen Link gestellt, der dich der Lösung näher bringt - mit dem dort angegebenen Lösungsweg bekommst du jedenfalls das gesuchte Ergebnis.

Sorry für die Verwirrung,

Patrick

Bezug
                
Bezug
Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 08.02.2005
Autor: pjoas



Hallo - das was oben steht ist absoluter Unfug - sorry - da muss ein Fehler in der Formel sein.

Ich hab mal im Netz ein wenig´gesucht (ich habs nicht so mit der Geometrie) und hab unter

http://sites.inka.de/picasso/Cappel/abstand.html#Inhalt

eine ganz nette Darstellung gefunden. Setzt du in den zweiten Ansatz deine Werte ein, so erhälst du tatsächlich 1 als Lösung

Bezug
                        
Bezug
Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 08.02.2005
Autor: Sue20

Vielen Dank!

Aber ich versteh noch nicht, wie man auf [mm] \vec{u_{0}} [/mm] (auf der Website) kommt, also wie man das berechnet.

Bezug
                                
Bezug
Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Mi 09.02.2005
Autor: pjoas

Mit $ [mm] \vec{r} [/mm] - [mm] \vec{p} [/mm] = [mm] \vektor{-1 \\ 1 \\ 1}$ [/mm] und
[mm] $\vec{u_{0}} [/mm] = [mm] \bruch{1}{\wurzel{2}}\vektor{-1 \\ 0 \\ 1} [/mm] $
ergibt sich $d = [mm] \wurzel{3-2} [/mm] = 1$
wobei [mm] $u_{0}$ [/mm] der normierte Richtungsvektor der Geraden ist.

Gruß, Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]