matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteVektor
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Vektor
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Vektor

(Weitergeleitet von Einheitsvektor)
Schule

Geometrische Definition:


Ein Vektor ist eine Klasse von Verschiebungen oder Pfeilen, die die gleiche Länge, Richtung und Orientierung haben.

Ein Vektor ist also eine Größe, die aufgrund der Angabe von Maßzahl (Länge) und Richtung vollständig beschrieben ist. In physikalischen Anwendungen wird zusätzlich eine Einheit mit angegeben.

Die Länge eines Vektors wird sein Betrag genannt und durch das Symbol $ |\vec{a}| $ oder a dargestellt. Der Betrag eines Vektors ist stets positiv:

$ |\vec{a}|\ =\ a\ \le\ 0 $


Im anschaulichen Raum $ \IR^3 $ kann man sich einen Vektor vorstellen als ein Tripel von reellen Zahlen: $ \vec{a} = \vektor{a_1\\a_2\\a_3} $.
Die reellen Zahlen $ a_1, a_2, a_3 $ nennt man die Komponenten des Vektors.

Mit Vektoren kann man rechnen: siehe Vektorrechnung

spezielle Vektoren:


  • Ortsvektor
    Der Vektor, der vom Koordinatenursprung zu einem bestimmten Punkt verläuft:

$ P (p_1|p_2|p_3) \Rightarrow \vec{p} = \vektor{p_1\\p_2\\p_3} $

  • Richtungsvektor / Spannvektor
    nennt man einen Vektor, der die Richtung einer Geraden bestimmt.
    Durch zwei Richtungsvektoren wird eine Ebene aufgespannt: darum bezeichnet man Richtungsvektoren auch als Spannvektoren.

  • Einheitsvektor
    nennt man einen Vektor der Länge Eins, $ |\vec{e}|=1 $.

  • Normierter Vektor
    Man erhält den auf Eins normierten Vektor, indem man den Vektor $ \vec{a} $ mit dem Kehrwert seiner Länge multipliziert:

$ \vec{e_a}\ =\ \vec{a}\cdot{}|\vec{a}|^{-1}\ =\ \frac{\vec{a}}{|\vec{a}|} $

  • Nullvektor
    Der Nullvektor ist ein Vektor, dessen sämtliche Komponenten $ a_i $ den Wert Null besitzen

$ \vec{a}=\vektor{0\\.\\.\\0}=\vec{0} $

  • Gegenvektor, auch inverser Vektor
    Der Gegenvektor zum Vektor $ \vec{a} $ besitzt den gleichen Betrag, jedoch die entgegengesetzte Richtung zu $ \vec{a} $

Universität

Abstrakte Definition:
Ein Vektor $ v \in V $ ist ein Element eines Vektorraumes $ V\,. $



[link]Vektor-Artikel der Wikipedia
[link]Vektor-Artikel in mathe-online.at

Erstellt: Mi 08.09.2004 von Marc
Letzte Änderung: Do 06.06.2013 um 15:38 von Marcel
Weitere Autoren: Herby, informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]