matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesverständnisproblem zum taylor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - verständnisproblem zum taylor
verständnisproblem zum taylor < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verständnisproblem zum taylor: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:55 Di 09.02.2010
Autor: schpezialist

Aufgabe
Approximation in einer Umgebung [mm] x_{0} [/mm]
... Setze
[mm] T_{1,x0}(x)=a_{0}+a_{1}*(x-x_{0}) [/mm]
[mm] T_{2,x0}(x)=a_{0}+a_{1}*(x-x_{0})+a_{2}*(x-x_{0})^{2} [/mm]
[mm] T_{3,x0}(x)=a_{0}+a_{1}*(x-x_{0})+a_{2}*(x-x_{0})^{2}+a_{3}*(x-x_{0})^{3} [/mm]  usw

Hallo leute!

Ich habe folgende Frage bezüglich Taylor: bei der herleitung der Koeffizienten für taylorpolynome um x=0 formulierte man ein Taylorpolynom ersten grades als
[mm] T_{1,0}(x)=a_{0}+a_{1}*x [/mm]
[mm] T_{2,0}(x)=a_{0}+a_{1}*x+a_{2}*x^{2} [/mm] usw. Dann setzte man halt
[mm] T_{1,0}=f(0) [/mm] sowie [mm] T_{1,0}'=f'(0) [/mm] usw und konnte also anschließend eine Aussage üebr die koeffizienten machen.
naja meine frage ist einfach: wie kommt für beliebigen entwicklungspunkt diese andere schreibweise der taylorpolynome zustande? wieso lautet es plötzlich
[mm] T_{1,x0}(x)=a_{0}+a_{1}*(x-x_{0}) [/mm] ?
Ich danke für jede Antwort :P

Grüße Stephan
PS Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
verständnisproblem zum taylor: Lies x als ( x-0 )
Status: (Antwort) fertig Status 
Datum: 09:08 Di 09.02.2010
Autor: karma

Sei [mm] $x_{0}=0$. [/mm]

Dann schreibt man

für

[mm] $(x-x_{0})$ [/mm]

statt

$( x - 0 )$

kürzer

$x$.

Schönen Gruß
Karsten


Bezug
                
Bezug
verständnisproblem zum taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Di 09.02.2010
Autor: schpezialist

hallo karma!
danke für deine antwort :P
nur beantwrotet sie mir meine frage noch nicht so ganz : mir war schon klar, dass, wenn man 0 einsetzt, aus (x-0) ein x wird.
meine frage aber war eher, wieso man das taylorpolynom überhaupt als
[mm] T_{2,x0}(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2} [/mm] setzt - wieso reicht nicht einfach eine "normale" polynomdarstellung in form von
[mm] T_{2,x0}(x)=a_{0}+a_{1}x_{0}+a_{2}{}x_{0}^{2} [/mm] ?
sry falls meine frage unverständlich gestellt ist :P ich hoffe jemand versteht was ich meine

grüße
stephan


Bezug
                        
Bezug
verständnisproblem zum taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Mi 10.02.2010
Autor: Herby

Hallo Stephan,

>  danke für deine antwort :P
> nur beantwrotet sie mir meine frage noch nicht so ganz :
> mir war schon klar, dass, wenn man 0 einsetzt, aus (x-0)
> ein x wird.
>  meine frage aber war eher, wieso man das taylorpolynom
> überhaupt als
> [mm]T_{2,x0}(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}[/mm] setzt -
> wieso reicht nicht einfach eine "normale"
> polynomdarstellung in form von
>  [mm]T_{2,x0}(x)=a_{0}+a_{1}x_{0}+a_{2}{}x_{0}^{2}[/mm] ?

so geht das gar nicht, weil [mm] x_0=0 [/mm] gesetzt werden kann, aber nicht x=0! Es heißt ja außerdem [mm] x-\red{a} [/mm] mit der Entwicklungsstelle [mm] \red{a}=x_0=0 [/mm] - das ist nur ein Sonderfall.

LG
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]