matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationpart. Integration mit Substitu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - part. Integration mit Substitu
part. Integration mit Substitu < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

part. Integration mit Substitu: verständnis
Status: (Frage) beantwortet Status 
Datum: 13:34 Do 08.03.2012
Autor: EvelynSnowley2311

huhu,
ich arbeite mich grade in das Thema partielle Integration rein. Den Riecher , was ich als g(x) bzw f(x) nehme hab ich noch nicht ganz raus, aber ich habs schon paar mal angewendet und kann grundlegend mit der Rechnung umgehen.

Jetzt kommen noch diese hübschen Substitutionsregeln hinzu, wo ich massiv Probleme zu kriegen scheine...

Hier erstmal meine Werkzeuge, 1 zu 1 abgetippt:


[mm] \underline{Partielle Integration:} [/mm]

Seien f,g : [a,b] [mm] \to \IR [/mm] stetig differenzierbar, dann gilt

[mm] \integral_{a}^{b}{f'(x)\*g(x) dx} [/mm] = [mm] [(f\*g)(x)]^b_a [/mm] - [mm] \integral_{a}^{b}{f(x)\*g'(x) dx} [/mm]


und


[mm] \underline{Substitutionsregel} [/mm]

Die Funktion f:[a,b] [mm] \to \IR [/mm] sei stetig und h:[c,d] [mm] \to [/mm] [a,b] stetig differenzierbar. Dann gilt die Substitutionsformel:

[mm] \integral_{a}^{b}{f(h(x))\* h'(x) dx} [/mm] = [mm] \integral_{h(a)}^{h(b)}{f(t) dt} [/mm]


So und jetzt eine einfach Beispielaufgabe aus dem Buch mit Erklärungen, die ich nicht ganz nachvollziehen kann:


"Wir wollen das Integral [mm] \integral_{0}^{a}{sin(2x) dx} [/mm] für eine reelee Zahl a > 0 berechnen. Wir substituieren t = 2x, erhalten damit
[mm] \bruch{dt}{dx} [/mm] = 2  <=> dt = 2 dx <=>  dx = [mm] \bruch{dt}{2} [/mm] und demnach:

[mm] \integral_{0}^{a}{sin(2x) dx} [/mm] =  [mm] \integral_{0}^{2a}{0.5 \* sin(t) dt} [/mm] = 0.5 [mm] \* \integral_{0}^{2a}{ sin(t) dt} [/mm] =0.5 [mm] \* [-cos(t)]^{2a}_0 [/mm] = 0.5 [mm] \* [/mm] (-cos(2a)+cos(0)) = 0.5 [mm] \* [/mm] (1-cos(2a))."



Soviel zur Aufgabe. 2 Fragen hab ich vorerst:
In der Schule hab ich nicht ganz aufgepasst wie ich auf diese Weise das differenzieren hinsschreibe:
Was heißt [mm] \bruch{dt}{dx} [/mm] = 2 in Worten? wird nach x oder t differenziert?

meine andre Frage: nach dem ersten Umformungsschritt ist ja mein h(a) = 2a, aber müsste dort nicht 2xa stehen? und überhaupt, wo kommte die 0.5 her?

        
Bezug
part. Integration mit Substitu: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 08.03.2012
Autor: schachuzipus

Hallo Evelyn,


> huhu,
>  ich arbeite mich grade in das Thema partielle Integration
> rein. Den Riecher , was ich als g(x) bzw f(x) nehme hab ich
> noch nicht ganz raus,

Das kommt mit der Zeit und der wachsenden Erfahrung. Je mehr Aufgaben du dazu rechnest, desto schneller "siehst" du, was zielführend ist.

> aber ich habs schon paar mal
> angewendet und kann grundlegend mit der Rechnung umgehen.

Gut so!

>  
> Jetzt kommen noch diese hübschen Substitutionsregeln
> hinzu, wo ich massiv Probleme zu kriegen scheine...
>  
> Hier erstmal meine Werkzeuge, 1 zu 1 abgetippt:
>  
>
> [mm]\underline{Partielle Integration:}[/mm]
>  
> Seien f,g : [a,b] [mm]\to \IR[/mm] stetig differenzierbar, dann
> gilt
>  
> [mm]\integral_{a}^{b}{f'(x)\*g(x) dx}[/mm] = [mm][(f\*g)(x)]^b_a[/mm] - [mm]\integral_{a}^{b}{f(x)\*g'(x) dx}[/mm]
>  
>
> und
>
>
> [mm]\underline{Substitutionsregel}[/mm]
>  
> Die Funktion f:[a,b] [mm]\to \IR[/mm] sei stetig und h:[c,d] [mm]\to[/mm]
> [a,b] stetig differenzierbar. Dann gilt die
> Substitutionsformel:
>  
> [mm]\integral_{a}^{b}{f(h(x))\* h'(x) dx}[/mm] = [mm]\integral_{h(a)}^{h(b)}{f(t) dt}[/mm]
>  
>
> So und jetzt eine einfach Beispielaufgabe aus dem Buch mit
> Erklärungen, die ich nicht ganz nachvollziehen kann:
>  
>
> "Wir wollen das Integral [mm]\integral_{0}^{a}{sin(2x) dx}[/mm] für
> eine reelee Zahl a > 0 berechnen. Wir substituieren t = 2x,
> erhalten damit
>  [mm]\bruch{dt}{dx}[/mm] = 2  <=> dt = 2 dx <=>  dx = [mm]\bruch{dt}{2}[/mm]

> und demnach:
>  
> [mm]\integral_{0}^{a}{sin(2x) dx}[/mm] =  [mm]\integral_{0}^{2a}{0.5 \* sin(t) dt}[/mm]
> = 0.5 [mm]\* \integral_{0}^{2a}{ sin(t) dt}[/mm] =0.5 [mm]\* [-cos(t)]^{2a}_0[/mm]
> = 0.5 [mm]\*[/mm] (-cos(2a)+cos(0)) = 0.5 [mm]\*[/mm] (1-cos(2a))."
>  
>
>
> Soviel zur Aufgabe. 2 Fragen hab ich vorerst:
>  In der Schule hab ich nicht ganz aufgepasst wie ich auf
> diese Weise das differenzieren hinsschreibe:
>  Was heißt [mm]\bruch{dt}{dx}[/mm] = 2 in Worten? wird nach x oder
> t differenziert?

Nach [mm]x[/mm], die Substitution wurde ja gewählt als [mm]t=t(x):=2x[/mm]

Damit ist [mm]t'(x)=\frac{dt}{dx}=2[/mm]

[mm]\frac{dt}{dx}[/mm] ist nur eine andere Schreibweise für die Ableitung der Funktion [mm]t[/mm] nach der Variable x, also für [mm]t'(x)[/mm]

>  
> meine andre Frage: nach dem ersten Umformungsschritt ist ja
> mein h(a) = 2a, aber müsste dort nicht 2xa stehen?

Nein, mit [mm]t=t(x)=2x[/mm] ist doch für die obere Grenze [mm]x=a[/mm]:

[mm]t(a)=2a[/mm] als "neue" obere Grenze, die alte untere Grenze $x=0$ wird zu [mm] $t(0)=2\cdot{}0=0$ [/mm] - bleibt hier also gleich.

> und überhaupt, wo kommte die 0.5 her?

Oben wurde doch ausgerechnet, dass [mm]dx=\frac{dt}{2}[/mm] ist.

Das [mm]dx[/mm] wird im Integral durch [mm]\frac{dt}{2}[/mm] ersetzt und das [mm]\frac{1}{2}=0,5[/mm] als multiplikative Konstante rausgezogen ...

Gruß

schachuzipus


Bezug
                
Bezug
part. Integration mit Substitu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Do 08.03.2012
Autor: EvelynSnowley2311

ahhh, ich danke dir;)

mir war nicht klar dass t  t(x) entspricht und dass man a als das x dann ansieht.

Bezug
                
Bezug
part. Integration mit Substitu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 08.03.2012
Autor: EvelynSnowley2311

eine Frage hätte ich doch noch zum verständnis:

wenn sin(2x)  mein f(h(x)) ist, wo hab ich dann eig für meine Substitutionsformel das h'(x)? da müsste ja eig noch dann [mm] \* [/mm] 2 hinterstehen.

$ [mm] \integral_{a}^{b}{f(h(x))* h'(x) dx} [/mm] $ = $ [mm] \integral_{h(a)}^{h(b)}{f(t) dt} [/mm] $

Bezug
                        
Bezug
part. Integration mit Substitu: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 08.03.2012
Autor: fred97


> eine Frage hätte ich doch noch zum verständnis:
>  
> wenn sin(2x)  mein f(h(x)) ist, wo hab ich dann eig für
> meine Substitutionsformel das h'(x)? da müsste ja eig noch
> dann [mm]\*[/mm] 2 hinterstehen.


>  
> [mm]\integral_{a}^{b}{f(h(x))* h'(x) dx}[/mm] =
> [mm]\integral_{h(a)}^{h(b)}{f(t) dt}[/mm]


Wenn Du t=h(x) substituierst, so ist  [mm] \bruch{dt}{dx}=h'(x), [/mm] somit dt=h'(x) dx, also

                      f(h(x))*h'(x) dx= f(t) dt

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]