matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenlösung komplexer gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "komplexe Zahlen" - lösung komplexer gleichungen
lösung komplexer gleichungen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösung komplexer gleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 01.11.2011
Autor: ionenangrif

Aufgabe
lösen sie die gleichung

ich weiß dass z * = (a-bj), statt (a+bj)
hier die gleichung:

(2-j) z + z* -5j = (z+j)*

ich weiß nicht, wie sich z* auf die gleichung auswirkt oder was ich damit bloß anfangen soll. meine vermutung :

(2-j) z + 5j = (z-j)

brauche hinweise, wie man mit sowas in der gleichung umgeht.

vorhin meinte jemand, ich soll z durch (a+bj) und z* durch (a-bj) ersetzen, allerdings kann ich dann die gleichung nicht mehr nach z auflösen...
für mich ist sowas wie z* = (a-bj) eine allgemeine gleichung, man kann doch nicht heiteren himmels in jeder gleichung dann für z* dann (a-bj) einsetzen...

        
Bezug
lösung komplexer gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Mi 02.11.2011
Autor: reverend

Hallo ionenangrif,

Du machst Dir da offenbar mehr Probleme als es eigentlich gibt.

> lösen sie die gleichung
>  ich weiß dass z * = (a-bj), statt (a+bj)

Aha. Meist wird das eher als [mm] \bar{z} [/mm] geschrieben und heißt das "konjugiert Komplexe", oder "die Konjugierte" von z.

>  hier die gleichung:
>  
> (2-j) z + z* -5j = (z+j)*
>  
> ich weiß nicht, wie sich z* auf die gleichung auswirkt
> oder was ich damit bloß anfangen soll. meine vermutung :
>  
> (2-j) z + 5j = (z-j)

Nein, das wäre zu einfach...

> brauche hinweise, wie man mit sowas in der gleichung
> umgeht.
>  
> vorhin meinte jemand, ich soll z durch (a+bj) und z* durch
> (a-bj) ersetzen,

Spitzentipp!

> allerdings kann ich dann die gleichung
> nicht mehr nach z auflösen...

Aber noch nach a und b, oder?

>  für mich ist sowas wie z* = (a-bj) eine allgemeine
> gleichung, man kann doch nicht heiteren himmels in jeder
> gleichung dann für z* dann (a-bj) einsetzen...

Solange Du für z dann (a+bj) einsetzt, ist das aber ok.

Also mit z=a+bj:

[mm] (2-j)z+z^{\star}-5j=(z+j)^{\star} [/mm]

[mm] \gdw\quad (2-j)(a+bj)+(a-bj)-5j=(a+bj+j)^{\star}=a-bj-j [/mm]

[mm] \gdw\quad [/mm] 2a+2bj-aj+b+a-bj-5j=a-bj-j

[mm] \gdw\quad [/mm] 2a+b+2bj-aj-4j=0

Betrachtung des Realteils: 2a+b=0
Betrachtung des Imaginärteils: 2b-a-4=0

...und das kann man doch lösen. Ein gewöhnliches lineares Gleichungssystem.

Grüße
reverend


Bezug
        
Bezug
lösung komplexer gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Mi 02.11.2011
Autor: fred97

Du hast also die Gl.

(*)    (2-j) z + z* -5j = (z+j)* .

Nun ist doch (z+j)*=z*-j. Damit wird aus (*):

          (2-j) z + z* -5j = z*-j

oder

            (2-j) z +  -5j = -j,

eine Gl. ganz ohne z*


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]