matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und Datenstrukturenformeln zum sort., wachstum n!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algorithmen und Datenstrukturen" - formeln zum sort., wachstum n!
formeln zum sort., wachstum n! < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formeln zum sort., wachstum n!: Idee
Status: (Frage) beantwortet Status 
Datum: 12:41 Do 01.05.2008
Autor: honkmaster

Aufgabe
Zeigen Sie, dass N! exponentiell mit N wächst. Hinweis: Finden Sie eine Basis b>1, so dass [mm] b^N [/mm] < N! für hinreichend großes N. (5 Punkte)

Hallo, habe obige aufgabe von unserem Prof auf dem Übungszettel gefunden. Habe leider keinen lösungsansatz und diese Aufgabe gibt ja nur 5 punkte so schwer kanns nicht sein. ich habe mich schon mit dem exponentiellen wachstum auseinadergesetzt und versucht mit funktionswerten der fakultät werte für die entsprechende formel zu ermitteln dabei kamn aber nur murks raus und es passte meist nur für die nächste stelle?! wie versteht ihr die aufgabe?ich denke ich war auf dem richtigen weg sozusagen die fakultät durch eine wachstumsfuktion zu nähern aber naja welche ist richtig, oder lag ich ganz falsch? was bedeutet hier hinreichencd großes N und die bedingung [mm] b^N [/mm] < N! ? für anregungen und hilfe wäre ich dankbar.

ich habe diese frage in keinem anderen forum oder auf keiner anderen website gestellt.

        
Bezug
formeln zum sort., wachstum n!: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Do 01.05.2008
Autor: Karl_Pech

Hallo honkmaster,


> Zeigen Sie, dass N! exponentiell mit N wächst.


Ich denke, damit wird es gezeigt.



Grüße
Karl




Bezug
                
Bezug
formeln zum sort., wachstum n!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Do 01.05.2008
Autor: honkmaster

anscheinend bin ich total blind aber wie zeige ich das? klar n wächst, 1,2,3,4,5,6,7 die zugehörigen fakultäten auch mit 1,2,6,24,120,720,5400 klar man sieht sofort fas des exponentiell aber was mauss ich für ne basis b wählen?

Bezug
                        
Bezug
formeln zum sort., wachstum n!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Do 01.05.2008
Autor: honkmaster

mir ist grade aufgefallen wäre 2 eine mögliche basis? das liegt ja immer drunter..aber naja ab bei n=7 passt auch 3 als basis hmm wenn ich jetzt 2 als basis nehme und dann ne vollst. induktion mache reicht das?
Bezug
                                
Bezug
formeln zum sort., wachstum n!: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 01.05.2008
Autor: Karl_Pech

Ich denke, man kann auch folgendermaßen rechnen:


[mm]b^{\left\lfloor\frac{n}{2}\right\rfloor} \le \left\lfloor\frac{n}{2}\right\rfloor^{\left\lfloor\frac{n}{2}\right\rfloor}\Leftrightarrow \left\lfloor\frac{n}{2}\right\rfloor\log_b b=\log_b\left(b^{\left\lfloor\frac{n}{2}\right\rfloor}\right)\le\left\lfloor\frac{n}{2}\right\rfloor\log_b\left\lfloor\frac{n}{2}\right\rfloor\Leftrightarrow 1\le \log_b\left\lfloor\frac{n}{2}\right\rfloor\Leftrightarrow b\le\left\lfloor\frac{n}{2}\right\rfloor[/mm]


Das heißt, für alle [mm]n\ge 4[/mm] und [mm]2\le b\le\left\lfloor\tfrac{n}{2}\right\rfloor[/mm] gilt [mm]b^{\left\lfloor\frac{n}{2}\right\rfloor}\le n![/mm]. Für [mm]n\in\{0,1\}[/mm] gilt die Ungleichung für jedes beliebige [mm]b\![/mm]. Für [mm]n\in\{2,3\}[/mm] gilt die Ungleichung z.B. für [mm]b=2\![/mm].



Bezug
                                        
Bezug
formeln zum sort., wachstum n!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Do 01.05.2008
Autor: honkmaster

wie kommt man den auf das [mm] \bruch{n}{2} [/mm] den überall zu stande?

Bezug
                                                
Bezug
formeln zum sort., wachstum n!: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 01.05.2008
Autor: Karl_Pech


> wie kommt man den auf das [mm]\bruch{n}{2}[/mm] den überall zu
> stande?


Also wie gesagt: Schaue dir nochmal diesen Link an.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]