matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale Sprachenendlichen Automaten bauen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Formale Sprachen" - endlichen Automaten bauen
endlichen Automaten bauen < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endlichen Automaten bauen: Grammatik für Nullen
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 23.10.2004
Autor: Karl_Pech

Hallo Leute,

(Ich hab' diese Frage auch []hier gestellt.)

Ich habe Probleme mit folgender Aufgabe:

Entwerfen Sie eine Grammatik für die Sprache [m]L = \left\{0^n:\text{n ist eine Quadratzahl}\right\}[/m].

(Tip zu (b): Erzeugen Sie schrittweise eine Grammatik [m]G = \left(V, \Sigma, P, S\right)[/m] mit $V = [mm] \left\{A,B,C,L,S\right\}$ [/mm] und [m]\Sigma = \left\{0\right\}[/m]. Erzeugen Sie im ersten Schritt mit $S [mm] \rightarrow [/mm] LA$ und $A [mm] \rightarrow [/mm] BC|BAC$ Satzformen der Form [mm] $LB^nC^n$ [/mm] mit [m]n \ge 1[/m]. Im zweiten Schritt wird nun [mm] $LB^nC^n$ [/mm] zu [mm]0^{n^2}[/mm] abgeleitet.
Fügen Sie hierzu eine Regel hinzu, durch die das am weitesten links stehende C durch Vertauschungen mit B nach links bewegt werden kann und bei jeder Vertauschung zwei Nullen erzeugt. Am linken Ende angekommen benötigt man nun eine Regel, durch die das C gelöscht, sowie ein B und eine 0 entfernt werden kann. Es entsteht eine Satzform mit 2n-1 Nullen, n-1 B's und n-1 C's. Überlegen Sie sich nun, wie man durch weitere Vertauschungsregeln und Löschregeln unter Verwendung der Tatsache, daß [mm] $\sum_{k=1}^{n} [/mm] (2k-1) = [mm] n^2$ [/mm] ist,
ans Ziel kommt.


Nun hat man mir im Mathe-Forum bereits gesagt, daß sich diese Summe auch rekursiv angeben läßt. Ich hatte das gefragt, weil solche Grammatiken
ja normalerweise rekursiv aufgebaut sind. Aber hier hat mir das leider nichts genützt. :(

Also hier die rekursive Form:
[mm] $b_0 [/mm] = 1$
[mm] $b_k [/mm] = [mm] b_{k-1} [/mm] + 2k + 1 ; k > 1$


Was jemand einen Rat?

Danke!

Viele Grüße
Karl




        
Bezug
endlichen Automaten bauen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Sa 06.11.2004
Autor: Karl_Pech

Hi Leute!

Wir hatten schon seit einiger Zeit die Lösung dazu besprochen:

[Dateianhang nicht öffentlich]

Grüße
Karl

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
endlichen Automaten bauen: geht nicht unbedingt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 16.11.2004
Autor: PhiBa

Hallo,

folgende gültige Ableitung führt nicht zu einem Wort der Sprache:

S -> LA -> LBAC -> LBBACC -> LBB00CC -> LBB00C0 -> LBB0000 -> LB00000 ->
L000000 -> 000000

Man muss die Projektionen ja nicht in der Reihenfolge verwenden. Also erzeugt die Grammatik nicht die angegebene Sprache.

Ich würde mal folgende Grammatik vorschlagen:
V = {A,B,C,L,R,S}
P = {
S -> 0
S- > LCABR
A -> CB|CAB
BC -> C0B
B0 -> 0B
0C -> C0
LC -> L
BR -> R
L0 -> 0
0R -> 0
}

Müsste eigentlich gehen.

MfG Philipp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]