matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigese-Funktion Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - e-Funktion Ableitung
e-Funktion Ableitung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion Ableitung: sowie Umstellung vom Exp
Status: (Frage) beantwortet Status 
Datum: 13:46 So 16.01.2005
Autor: matwan

Hallo...

folgende funktion soll zum einen nach p zum anderen abgeleitet werden.
habe schon ein paar ansätze.

[mm]14e^{-0,4p} [/mm]

1) Ableitung
2) Auflösen nach p

meine Lösungsansätze (bin mir sehr sehr unsicher)

1)
[mm]14*-0,4e^{-0,4p}[/mm]
bzw.
[mm]-5,6e^{-0,4p}[/mm]

2)
[mm]ln14*-0,4p[/mm]
bzw.
[mm]p=6,5976433[/mm]


vielen dank




(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)





        
Bezug
e-Funktion Ableitung: Ableitung ok, aber ...
Status: (Antwort) fertig Status 
Datum: 14:03 So 16.01.2005
Autor: Loddar

Hallo matwan,

auch Dir hier natürlich [willkommenmr] !!


> [mm]14e^{-0,4p}[/mm]
>  
> 1) Ableitung
> 2) Auflösen nach p
>  
> meine Lösungsansätze (bin mir sehr sehr unsicher)
>  
> 1)
> [mm]14*-0,4e^{-0,4p}[/mm]
> bzw.
> [mm]-5,6e^{-0,4p}[/mm]

[daumenhoch] Richtig!

Aber bitte etwas "sauberer" hinschreiben ;-):
$f(p) = [mm] 14*e^{-0,4p}$ [/mm]
$f'(p) = [mm] -5,6*e^{-0,4p}$ [/mm]


> 2)
> [mm]ln14*-0,4p[/mm]   [notok]

Hier ist unklar, welcher Wert für $f(p)$ eingesetzt wurde.
Solche Umformungen sind nur an Gleichungen möglich, d.h. wir haben ein Gleichheitszeichen, wo auf beiden Seiten etwas steht ...

Bitte verrate uns doch noch die linke Seite, damit wir das kontrollieren können (so ist das nicht möglich).


Grüße
Loddar


Bezug
                
Bezug
e-Funktion Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 So 16.01.2005
Autor: matwan

ok.

Ausgangsfunktion:

[mm]x(p) = 14*e^{-0,4p}[/mm]


2) Auflösung nach p

[mm] x(p) = ln14*-0,4p[/mm]

[mm] \bruch {x} {ln14} = -0,4p[/mm]  ???

[mm] \bruch {x-0,4} {ln14} = p[/mm]  ???

uhh nee, jetzt komme ich glaube ich gerade arg ins schleudern


Bezug
                        
Bezug
e-Funktion Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 So 16.01.2005
Autor: Loddar

Hallo matwan!

  

> Ausgangsfunktion:
> [mm]x(p) = 14*e^{-0,4p}[/mm]
>  
> 2) Auflösung nach p

[lichtaufgegangen] Also eine allgemein Lösung!!


> [mm]x(p) = ln14*-0,4p[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


[notok] Das geht so nicht, du mußt dann schon auf beiden Seiten der Gleichung den Logarithmus anwenden.
Vorher muß aber die "14" auf die linke Seite gebracht werden:
$x(p) = 14*e^{-0,4p}$
$\gdw$
$\bruch{x(p)}{14} = e^{-0,4p}$
$\gdw$
$ln\left[\bruch{x(p)}{14}\right] = ln\left[e^{-0,4p}\right] = -0,4p*ln\left(e) = -0,4p * 1 = -0,4p$

Kommst Du nun alleine weiter?


Loddar


Bezug
                                
Bezug
e-Funktion Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 So 16.01.2005
Autor: matwan

ich befürchte nicht.
bin mit logarithmen und e-funktionen sehr unsicher.

einzig:
[mm]-0,4p = ln x(p) - ln 14[/mm]

würde mir noch einfallen, aber selbst da bin ich mir nicht ganz sicher.

(loddar, vielen vielen dank für deine unterstützung)






Bezug
                                        
Bezug
e-Funktion Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 16.01.2005
Autor: Loddar

Hallo matwan!


>  [mm]-0,4p = ln x(p) - ln 14[/mm]

[daumenhoch] Das ist doch schon mal prima.
Das zeigt doch, daß Du auch die MBLogarithmusgesetze kannst ...

Der letzte Schritt hat nun überhaupt nichts mehr mit e-Funktion und ln-Funktion zu tun:
Wir teilen auf beiden Seiten durch "$-0,4$" und haben dann unser Endergebnis:

[mm]-0,4p = ln x(p) - ln 14[/mm]
[mm]p = - \bruch{1}{0,4} * [ln x(p) - ln 14] = - 2,5 * [ln x(p) - ln 14] = -2,5*ln x(p) + 2,5*ln 14[/mm]

Voilà!!


Loddar


Bezug
                                                
Bezug
e-Funktion Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Do 20.01.2005
Autor: matwan

Danke !!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]