matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Fr 21.03.2008
Autor: yogi35_JZ

Aufgabe
Gegeben ist:  3*3!+4*4!+...+n*n! = (n+1)!-6 und n[mm]\ge[/mm]3
für n=3 gilt dann:            18 = 18
Damit ist die Induktionsvoraussetzung erfüllt. Jetzt wird aus n=n+1
Dann gilt: 3*3!+4*4!+...+n*n!+(n+1)*(n+1)!=(n+1+1)!-6
Da n*n!=(n+1)!-6
gilt jetzt:3*3!+4*4!+...+(n+1)!-6+(n+1)*(n+1)!=(n+2)!-6
oder auch:3*3!+4*4!+...+(n+1)!-6+(n+1)*(n+1)!=n!*(n+1)*(n+2)-6

Zu zeigen ist also, dass: (n+1)!-6+(n+1)*(n+1)!=n!*(n+1)*(n+2)-6
da (n+1)!=n!*(n+1)  ist: (n!*(n+1)-6)+((n+1)*n!*(n+1))=n!*(n+1)*(n+2)-6



Frage 1: Ist das soweit korrekt?
Frage 2: Wie geht es jetzt weiter. Muss ja irgendwie auf die rechte Formel n!*(n+1)*(n+2) kommen, oder habe ich einen Denkfehler?
Mit den Zahlen eingesetzt funktioniert es....





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vollständige Induktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:20 Fr 21.03.2008
Autor: Loddar

Hallo yogi,

[willkommenmr] !!


Du hast die Induktionsvoraussetzung falsch verstanden / eingesetzt. Gemäß Aufgabenstellung gilt:

$$3*3!+4*4!+...+n*n! \ = \ [mm] \summe_{k=3}^{n}k*k! [/mm] \ = \  (n+1)!-6$$

Und im Induktionsschritt ist zu zeigen, dass: [mm] $\summe_{k=3}^{n+1}k*k! [/mm] \ = \  (n+2)!-6$ .


Gruß
Loddar

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Fr 21.03.2008
Autor: yogi35_JZ

Aufgabe
Dann heißt also die Induktionsvoraussetzung:
(n*n)!+(n+1)*(n+1)!=(n+2)!-6

Ist das richtig?

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Fr 21.03.2008
Autor: leduart

Hallo
> Dann heißt also die Induktionsvoraussetzung:

Nein das ist die Induktions -Behauptung!

>  (n*n)!+(n+1)*(n+1)!=(n+2)!-6

die Induktionsvors ist
[mm] \summe_{i=1}^{n}i*i!=(n+1)!-6 [/mm]
Du musst also zeigen:
n*n!+(n+1)*(n+1)=(n+2)!-6
und einsetzen darfst du die Ind.Vors.
also am besten setz die links ein, und versuch durch geschicktes Umformen (ausklammern) auf die rechte Seite zu kommen.
vielleicht richtig gemeint, aber falsch formuliert.
Gruss leduart

Bezug
                        
Bezug
Vollständige Induktion: Summanden fehlen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Fr 21.03.2008
Autor: Loddar

Hallo yogi!


> Dann heißt also die Induktionsvoraussetzung:
>  (n*n)!+(n+1)*(n+1)!=(n+2)!-6

Wie leduart schon schrieb, ähnelt das der Induktionsbehauptung. Aber da fehlen doch noch die ersten Summanden $3*3!+4*4!+5*!+...+(n-1)*(n-1)!$ .


Gruß
Loddar


Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Fr 21.03.2008
Autor: yogi35_JZ

Aufgabe
Wie leduart schon schrieb, ähnelt das der Induktionsbehauptung. Aber da fehlen doch noch die ersten Summanden 1*1!+2*2!+3*3!+...+(n-1)*(n-1)! .

Dann heißt also die vollständige Induktionsbehauptung:

3*3!+4*4! + ... + n*n! + (n+1)*(n+1)! = (n+2)!-6
da n*n! = (n+1)!-6 ergibt sich dann:
3*3!+4*4! + ... + (n+1)!-6 + (n+1)*(n+1)! = (n+2)!-6
und (n+2)!-6 ist doch nichts anderes wie n!*(n+1)*(n+2)-6
so komme ich auf:
3*3!+4*4! + ... + (n+1)!-6 + (n+1)*(n+1)! = n!*(n+1)*(n+2)-6
oder verkürzt: (n+1)!-6 + (n+1)*(n+1)! = n!*(n+1)*(n+2)-6

Das müsste doch jetzt richtig sein, oder?


Bezug
                                        
Bezug
Vollständige Induktion: immer noch falsch
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 21.03.2008
Autor: Loddar

Hallo yogi!


Die Induktionsvorausbehauptung ist nun richtig. Aber die Induktionsvoraussetzung lautet (ebenfalls mit allen Summanden):
$$3*3!+4*4!+5*5!+...+n*n! \ = \ (n+1)!-6$$

Das heißt also im Induktionsschritt:
[mm] $$\blue{3*3!+4*4!+5*5!+...+n*n!}+(n+1)*(n+1)! [/mm] \ = \ [mm] \blue{(n+1)!-6}+(n+1)*(n+1)! [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Fr 21.03.2008
Autor: yogi35_JZ

ja, dann heißt es doch:

(n+1)!-6 + (n+1)*(n+1)!=(n+2)!-6
wie forme ich jetzt den linken Term so um, dass dabei (n+2)!-6 rauskommt?

Bezug
                                                        
Bezug
Vollständige Induktion: ausklammern
Status: (Antwort) fertig Status 
Datum: 16:01 Fr 21.03.2008
Autor: Loddar

Hallo yogi!


Klammere $(n+1)!_$ aus (den Term $-6_$ mal außen vor gelassen).


Gruß
Loddar


Bezug
                                                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 21.03.2008
Autor: yogi35_JZ

Habe ich schon probiert (n+1)! auszuklammern. da liegt aber mein Problem in der Fakultätendarstellung. Wie sieht denn das aus, wenn ich (n+1)! ausklammere?

Bezug
                                                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Fr 21.03.2008
Autor: schachuzipus

Hallo Jörn,

du hattest [mm] $(n+1)!-6+(n+1)\cdot{}(n+1)!$ [/mm]

Schreiben wir die -6 ganz nach hinten:

[mm] $=\left[(n+1)!+(n+1)\cdot{}(n+1)!\right]-6$ [/mm]

[mm] $=\left[\blue{1}\cdot{}\red{(n+1)!}+\blue{(n+1)}\cdot{}\red{(n+1)!}\right]-6$ [/mm]

Nun $(n+1)!$ ausklammern:

[mm] $=\red{(n+1)!}\cdot{}\left[\blue{1}+\blue{(n+1)}\right]-6$ [/mm]

[mm] $=\left[(n+1)!\cdot{}(n+2)\right]-6=(n+2)!-6$ [/mm]


LG

schachuzipus

Bezug
                                                                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Fr 21.03.2008
Autor: yogi35_JZ

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]