matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesUmsortieren von Vektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Umsortieren von Vektor
Umsortieren von Vektor < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umsortieren von Vektor: Idee
Status: (Frage) beantwortet Status 
Datum: 15:00 Di 24.07.2012
Autor: Druss

Hallo,

ich hoffe das ist das richtige Forum^^.

Ich suche nach einer Möglichkeit die Einträge eines nx1 Vektors mit n gerade so umsortieren, sodass

- keiner der Einträge mehr an der ursprünglichen Stelle steht
- die Korrelation des Vektors mit den umsortierten Vektor möglichst hoch ist

Ich habe mir gedacht, dass evtl wie folgt vorgehen kann:

1) Nehme den ersten Eintrag [mm] x_1. [/mm]
2) Berechne für [mm] x_1 [/mm] zu jedem Eintrag [mm] x_i [/mm] , i=2,....,n die euklidische Distanz.
3) Nehme den Wert [mm] x_i [/mm] bei welchem die euklidische Distanz am kleinsten ist.
4) Setze diesen Wert [mm] x_i [/mm] an die Stelle von x1 und x1 anstelle von [mm] x_i. [/mm]
5) Fahre mit [mm] x_2 [/mm] analog fort (wenn [mm] x_i =x_2 [/mm] dann [mm] x_3 [/mm] etc...).

Nun bin ich mir jedoch ein wenig unsicher, da ich so die größten Abstände bei den Zuordnungen erhalte, welche zuletzt geschehen.

Ich bin mir nicht sicher ob es nicht beispielsweise möglich ist anstelle [mm] x_1 [/mm] nicht den Wert [mm] x_i [/mm] zu nehmen sondern einen Wert [mm] x_j, [/mm] weil bsp. gilt

[mm] (x_1 [/mm] - [mm] x_j)^2 [/mm] + [mm] (x_n [/mm] - [mm] x_i)^2 [/mm] < [mm] (x_1 [/mm] - [mm] x_i)^2 [/mm] + [mm] (x_n [/mm] - [mm] x_j)^2 [/mm]

Ich hoffe ihr versteht was ich meine^^.


Des Weiteren habe ich mir dann gedacht, dass ich einfach alle möglichen Kombinationen berechne und dann die Zuordnung wähle für welche die Summe der euklidischen Distanzen am kleinsten wird.

Wenn n jedoch recht groß ist, so gibt es leider seeehr viele Kombinationsmöglichkeiten nämlich

[mm] \summe_{i=1}^{n} [/mm] (n-i)!

Viele

Grüße
Druss

        
Bezug
Umsortieren von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 24.07.2012
Autor: abakus


> Hallo,
>  
> ich hoffe das ist das richtige Forum^^.
>  
> Ich suche nach einer Möglichkeit die Einträge eines nx1
> Vektors mit n gerade so umsortieren, sodass
>  
> - keiner der Einträge mehr an der ursprünglichen Stelle
> steht
>  - die Korrelation des Vektors mit den umsortierten Vektor
> möglichst hoch ist
>  
> Ich habe mir gedacht, dass evtl wie folgt vorgehen kann:
>  
> 1) Nehme den ersten Eintrag [mm]x_1.[/mm]
>  2) Berechne für [mm]x_1[/mm] zu jedem Eintrag [mm]x_i[/mm] , i=2,....,n die
> euklidische Distanz.
> 3) Nehme den Wert [mm]x_i[/mm] bei welchem die euklidische Distanz
> am kleinsten ist.
>  4) Setze diesen Wert [mm]x_i[/mm] an die Stelle von x1 und x1
> anstelle von [mm]x_i.[/mm]
>  5) Fahre mit [mm]x_2[/mm] analog fort (wenn [mm]x_i =x_2[/mm] dann [mm]x_3[/mm]
> etc...).
>  
> Nun bin ich mir jedoch ein wenig unsicher, da ich so die
> größten Abstände bei den Zuordnungen erhalte, welche
> zuletzt geschehen.
>  
> Ich bin mir nicht sicher ob es nicht beispielsweise
> möglich ist anstelle [mm]x_1[/mm] nicht den Wert [mm]x_i[/mm] zu nehmen
> sondern einen Wert [mm]x_j,[/mm] weil bsp. gilt
>  
> [mm](x_1[/mm] - [mm]x_j)^2[/mm] + [mm](x_n[/mm] - [mm]x_i)^2[/mm] < [mm](x_1[/mm] - [mm]x_i)^2[/mm] + [mm](x_n[/mm] -
> [mm]x_j)^2[/mm]
>  
> Ich hoffe ihr versteht was ich meine^^.
>  
>
> Des Weiteren habe ich mir dann gedacht, dass ich einfach
> alle möglichen Kombinationen berechne und dann die
> Zuordnung wähle für welche die Summe der euklidischen
> Distanzen am kleinsten wird.
>  
> Wenn n jedoch recht groß ist, so gibt es leider seeehr
> viele Kombinationsmöglichkeiten nämlich
>  
> [mm]\summe_{i=1}^{n}[/mm] (n-i)!
>  
> Viele
>  
> Grüße
>  Druss

Hallo,
mein Vorschlag: Tausche jeweils
- den größten und zweitgrößten
- den drittgrößten und den viertgrößten
- den fünft- und den sechstgrößten Wert usw.
miteinander aus.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]