matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit zeigen
Stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Mo 02.01.2012
Autor: imzadi

Hallo,
ich habe eine stetige,auf [a,b] definierte f und eine g mit g(x):=max(f(t)) für t aus [a,x],g ist auch auf [a,b]definiert.  Die Wohldefiniertheit von g ist mir klar. Jetzt versuche ich die Stetigkeit zu zeigen. Ist das nicht so,dass g stückweise entweder mit f übereinstimmt oder konstant ist? Dann könnte ich sagen - da f sogar glm.stetig gibt es für alle x,y aus [a,b] ein universelles delta, das ich für epsilon-delta-Beweis
nehmen kann. Ich hoffe,jemand kann mir einen Denkanstoß geben und bedanke mich für eure Hilfe.

Ich habe diese Frage in keinen anderen Foren auf anderen Seiten gestellt.

        
Bezug
Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 Di 03.01.2012
Autor: Helbig

Hallo,

> Jetzt versuche ich die Stetigkeit zu zeigen. Ist das nicht
> so,dass g stückweise entweder mit f übereinstimmt oder
> konstant ist?

Auf den ersten Blick. Aber denke an eine immer schneller oszillierende Funktion, die mit [mm] $\sin [/mm] 1/x$ gebaut wird. Stetige Funktionen können sehr komisch sein, auch auf kompakten Intervallen.

> glm.stetig gibt es für alle x,y aus [a,b] ein universelles
> delta, das ich für epsilon-delta-Beweis
>  nehmen kann. Ich hoffe,jemand kann mir einen Denkanstoß
> geben und bedanke mich für eure Hilfe.

Das mit dem universellen [mm] $\delta$ [/mm] ist schon mal ganz gut.
Dasselbe [mm] $\delta$ [/mm] kannst Du auch für $g$ benutzen. Zeige für $x<y$

[mm] $0\le g(y)-g(x)<\epsilon$ [/mm] falls $y-x < [mm] \delta$. [/mm]

Hierzu beachte, daß $f$ sein Maximum auf $[a, y]$ an einem Punkt [mm] $x_0$ [/mm] annimmt und unterscheide die Fälle [mm] $x_0 [/mm] < x$ und [mm] $x\le x_0\le [/mm] y$.

OK?

Grüße,
Wolfgang

Bezug
                
Bezug
Stetigkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:10 Di 03.01.2012
Autor: imzadi

Super,vielen Dank,Wolfgang,versuche ich aufzuschreiben.

lg imzadi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]