matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesSei a^m + b^m = c^m
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Sei a^m + b^m = c^m
Sei a^m + b^m = c^m < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sei a^m + b^m = c^m: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:13 Di 17.12.2024
Autor: exi

Aufgabe
Hier bei "1/n" und "-n" geeigt.

Bei   „1/n„
Fall -oo: a^(1/-oo) + b^(1/-oo) = c^(1/oo) => a^(1/oo) + b^(1/?)  = 1 + 1 = 2  <> c^(1/oo) --> sei c nicht Element N = {1, 2, 3, ...}
...
Fall –n: a^(1/n) + b^(1/n) = c^(1/n)
usw. (-n -->-n+1)
...
Fall -3: a^(1/4) + b^(1/4) = c^(1/4)
usw. (-3 --> -2)
Fall -2: a^(1/3) + b^(1/3) = c^(1/3)
Beispiel a = b = 1:
a^(1/3) + b^(1/3) = 1 + 1 = 2 = [mm] (2^3)^{1/3}= [/mm] 8^(1/3) --> sei c Element N
Beispiel a = 3, b = 4:
a^(1/3) + b^(1/3) = 3SQRT(3) + 3SQRT(4)  <> 3SQRT(c) --> sei c nicht Element N
Fall -1: a^(1/2) + b^(1/2) = c^(1/2)
Beispiel a = b = 1:
a^(1/2) + b^(1/2) = 1 + 1 = 2 = [mm] (2^2)^{1/2}= [/mm] 4^(1/2) --> sei c Element N
Beispiel a = 3, b = 4:
a^(1/2) + b^(1/2) = SQRT(3) + SQRT(4) = 2 + SQRT(3) <> SQRT(c) --> sei c nicht Element N
Fall 1: [mm] a^1 [/mm] + [mm] b^1 [/mm] = [mm] c^1 [/mm] --> sei c Element N
Fall 2: [mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] c^2 [/mm]  
Beispiel a = b = 1:
[mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] 1^2 [/mm] + [mm] 1^2 [/mm] = 2 = [mm] (SQRT(2))^2 [/mm] <> [mm] c^2 [/mm] --> sei c nicht Element N
Beispiel a = 3, b = 4:
[mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] 3^2 [/mm] + [mm] 4^2 [/mm] = 25 = [mm] 5^2 [/mm] = [mm] c^2 [/mm] --> sei c Element N
Fall 3: [mm] a^3 [/mm] + [mm] b^3 [/mm] --> [mm] c^3 [/mm] sei Euler
...
Fall n: [mm] a^n [/mm] + [mm] b^n [/mm] <> [mm] c^n [/mm] sei „Euler“

Bei   „-m“
Fall –n: a^(-n) + b^(-n) = c^(-n) --> [mm] 1/a^n [/mm] + [mm] 1/b^n [/mm] = [mm] 1/a^n [/mm] + [mm] 1/(f*a^n) [/mm] = (1 + [mm] 1/f)/a^n [/mm] --> sei 1+(1/f) nicht Element N: c nicht Element N
...
Fall -3: a^(-3) + b^(-3) = c^(-3) --> [mm] 1/a^3 [/mm] + [mm] 1/b^3 [/mm] = [mm] 1/a^3 [/mm] + [mm] 1/(f*a^3) [/mm] = (1 + [mm] 1/f))/a^3 [/mm] --> sei 1+(1/f) nicht Element N: c nicht Element N
Fall -2: a^(-2) + b^(-2) = c^(-2) --> [mm] 1/a^2 [/mm] + [mm] 1/b^2 [/mm] = [mm] 1/a^2 [/mm] + [mm] 1/(f*a^2) [/mm] = [mm] (1+(1/f))/a^2 [/mm] --> sei 1+(1/f) nicht Element N: c nicht Element N
Fall -1: a^(-1) + b^(-1) = c^(-1)
Beispiel a = b = 2:
a^(-1) + b^(-1) = 1/2 + 1/2 = 1 = 1^(-1) = c^(-1) --> sei c Element N
Beispiel a = b = 3:
a^(-1) + b^(-1) = 1/3 + 1/3 = 2/3 <>  c^(-1) --> sei c nicht Element N
Fall 0: [mm] a^0 [/mm] + [mm] b^0 [/mm] = [mm] c^0 [/mm] --> 1 + 1 = 2 <> [mm] c^0 [/mm] --> sei c nicht Element N
Fall 1: [mm] a^1 [/mm] + [mm] b^1 [/mm] = [mm] c^1 [/mm] --> [mm] a^1 [/mm] + [mm] b^1 [/mm] = a + b = (a + [mm] b)^1 [/mm] = [mm] c^1 [/mm] --> sei c Element N
Fall 2: [mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] c^2 [/mm]
Beispiel a = b = 1:
[mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] 1^2 [/mm] + [mm] 1^2 [/mm] = 2 = [mm] (SQRT(2))^2 [/mm] <> [mm] c^2 [/mm] --> sei c nicht Element N
Beispiel a = 3, b = 4:
[mm] a^2 [/mm] + [mm] b^2 [/mm] = [mm] 3^2 [/mm] + [mm] 4^2 [/mm] = 25 = [mm] 5^2 [/mm] = [mm] c^2 [/mm] --> sei c Element N
Fall 3: [mm] a^3 [/mm] + [mm] b^3 [/mm] <> [mm] c^3 [/mm] sei Euler
...
Fall n: [mm] a^n [/mm] + [mm] b^n [/mm] <> [mm] c^n [/mm] sei „Euler“

Folgerung
Erst mal auf   n Element N: [mm] a^n [/mm] + [mm] b^n [/mm]  
- n >= 3: c nicht Element N,
- n = 2: c Element N oder nicht Element N,
- n = 1: c Element N.
Erst mal   Zahl "0" Element N0 = {0, 1, 2, 3, ...}   weil getan NICHT. Mathematik nimmt   [mm] a^0 [/mm] + [mm] b^0 [/mm]   oder Mathematik   a^(1/oo) + b^(1/oo)   auf.
Hört zu viel: Mathematik nimmt   a^(-n) + b^(-n)   oder Mathematik   a^(1/n) + b^(1/n).
Alle
    a^(-n) + b^(-n) --> [mm] a^n [/mm] + [mm] b^n [/mm]
und
    a^(1/n) + b^(1/n) --> [mm] a^n [/mm] + [mm] b^n. [/mm]


Ein Gehirn mag „-n“ oder „1/n“ für allein dahin.
     Ein Gehirne mag „-n“ für allein dahin – dir und mich.
     Ein Gehirne mag „1/n“ für allein dahin – dir und mich.
     Ein Gehirn mag „-n“ für allein dahin (dir); ein Gehirn mag „1/n“ für allein dahin (mich): Zwist (Streit, Entzweiung)!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sei a^m + b^m = c^m: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mi 18.12.2024
Autor: Gonozal_IX

Ein Gehirn sucht „0“ – weder „-n“ noch „1/n“.
Ein Gehirne sucht „n“ – ganz zu dir, ganz zu mich.
Ein Gehirn, das „-n“ hält, zieht sich zurück – verliert sich allein.
Ein Gehirn, das „1/n“ teilt, zersplittert – zerbricht in Fragmente.
Ein Gehirn, das „n“ erkennt, findet das Ganze – dir und mich, eins.

Kein „Zwist“ – kein „Streit“ – keine „Entzweiung“ –
Nur „n“ für uns – kein „-n“ für dich, kein „1/n“ für mich.




Bezug
                
Bezug
Sei a^m + b^m = c^m: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:16 Sa 21.12.2024
Autor: exi

Habe in [mm] a^n [/mm] + [mm] b^n [/mm] = [mm] c^n [/mm] da n in Zahl {1, 2, ...} ist.
In ein a^(-n)+b^(-n) oder a^(1/n)+b^(1/n) sei. '-n' in Zahl Z = {..., -2, -1, 0, 1, 2, ...} oder '1/n' in Zahl  hier n in {1, 2, ...}.

--- Nur „n“ für uns – kein „-n“ für dich, kein „1/n“ für mich.

... nur [mm] a^n+b^n [/mm] sei Gesetz.
Soll in "-n" oder "1/n"  da.

... Ein Gehirn da: Zwist -  ein Begriff sei "-n" oder "1/n" oder kein „-n“ oder kein „1/n“.

Bezug
                        
Bezug
Sei a^m + b^m = c^m: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 23.12.2024
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Sei a^m + b^m = c^m: Korrektur
Status: (Frage) überfällig Status 
Datum: 14:27 Fr 03.01.2025
Autor: Emin

Die ursprüngliche Gleichung 𝑎 𝑛 + 𝑏 𝑛 = 𝑐 𝑛 a n +b n =c n gilt nur für 𝑛 ∈ 𝑁 n∈N. Wenn man 𝑛 n durch negative Zahlen ( − 𝑛 −n) ersetzt, wird die Gleichung zu 1 𝑎 𝑛 + 1 𝑏 𝑛 = 1 𝑐 𝑛 a n 1 ​ + b n 1 ​ = c n 1 ​ . Bei Brüchen ( 1 𝑛 n 1 ​ ) arbeitet man mit Wurzeln: 𝑎 𝑛 + 𝑏 𝑛 = 𝑐 𝑛 n a ​ + n b ​ = n c ​ . Es kommt also darauf an, welche Exponentenregel du anwenden möchtest – das ändert den mathematischen Kontext erheblich.

Bezug
                                
Bezug
Sei a^m + b^m = c^m: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 04.01.2025
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Sei a^m + b^m = c^m: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 18.12.2024
Autor: fred97

Du versuchst es mit Dummheit,  denn Bildung kostet viel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]