matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriePreisausschreiben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Preisausschreiben
Preisausschreiben < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Preisausschreiben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:44 Mi 06.01.2010
Autor: piccolo1986

Aufgabe
Also zu den Daten:
Es werden n Fragen gestellt mit je m Antwortmöglichkeiten, von denen genau eine richtig ist. Falsche Antworten werden nicht bestraft, sodass die Teilnehmer erst die Fragen beantworten, deren richtige Antwort sie kennen und anschließend raten sie nach Belieben die Antworten. Die Wahrscheinlichkeit, dass ein beliebiger Teilnehmer die richtige Antwort (unabhängig von den anderen Antworten) kennt ist [mm] p\in(0,1). [/mm]
Die Zufallsvariable [mm] Y_{j} [/mm] gibt Anzahl der richtigen Antworten des j-ten Teilnehmers an.
ges:
a) Wahrscheinlichkeit, dass bel. Teilnehmer eine bel. Frage richtig beantwortet
b) Verteilung von [mm] Y_{j}, [/mm] Erwartungswert und Varianz

Hey, also ich hab mir zuerst mal überlegt, dass es ja je zwei Ausgänge gibt, also richtige Antwort oder falsche Antwort mit den Wahrscheinlichkeiten p bzw. (1-p).
Also handelt es sich um eine Binomialverteilung, sodass gilt:
[mm] P(Y_{j}=k)=\vektor{n \\ k}p^{k}(1-p)^{n-k} [/mm] , wobei dies die Wahrscheinlichkeit dafür ist, dass ein beliebiger Teilnehmer genau k Antworten richtig hat.

Ist mein Ansatz so richtig?

mfg piccolo

        
Bezug
Preisausschreiben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 08.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Preisausschreiben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 So 10.01.2010
Autor: physikus89



Hallo piccolo,

das sehe ich soweit auch so, allerdings muss man hier beachten, dass die Wahrscheinlichkeit p, die du in der B-Verteilung angegeben hast nicht das p aus der Aufgabenstellung ist, da dieses p nur die Wahrscheinlichkeit beschreibt, dass er die Antwort weiß. D.h. das interessante p ist die Wahrscheinlichkeit, dass er die Frage richtig beantwortet und die sollte bei [mm] p_r [/mm] = p + (1-p) / m liegen. D.h. er antwortet richtig mit Wskt. p und rät bei Nichtwissen (1-p) richtig mit 1/m.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]