matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikMatching und Kreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Matching und Kreise
Matching und Kreise < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matching und Kreise: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 01:55 So 20.02.2011
Autor: hilado

Aufgabe
Die symmetrische Differenz [mm] M_{1} \Delta M_{2} [/mm] = [mm] (M_{1} [/mm] \ [mm] M_{2}) \cup (M_{2} [/mm] \ [mm] M_{1}) [/mm] zweier verschiedener perfekter Matchings eines Graphen enthält mindestens einen Kreis.

Ich weiß leider nicht, wie man darauf kommt, dass man durch die symmetrische Differenz zweier verschiedener perfekter Matchings zu einem Kreis kommt. Kann man das irgendwie genauer erläutern ?

        
Bezug
Matching und Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 02:26 So 20.02.2011
Autor: felixf

Moin!

> Die symmetrische Differenz [mm]M_{1} \Delta M_{2}[/mm] = [mm](M_{1}[/mm] \
> [mm]M_{2}) \cup (M_{2}[/mm] \ [mm]M_{1})[/mm] zweier verschiedener perfekter
> Matchings eines Graphen enthält mindestens einen Kreis.
>
>  Ich weiß leider nicht, wie man darauf kommt, dass man
> durch die symmetrische Differenz zweier verschiedener
> perfekter Matchings zu einem Kreis kommt. Kann man das
> irgendwie genauer erläutern ?

Da die Matchings verschieden sind gibt es mind. eine Kante [mm] $K_0$ [/mm] in der symmetrischen Differenz. Sei [mm] $P_0$ [/mm] ein Eckpunkt dieser Kante. Angenommen, die Kante [mm] $K_0$ [/mm] liegt in [mm] $M_1$. [/mm] Sei [mm] $P_1$ [/mm] jetzt der zweite Punkt von [mm] $M_1$. [/mm] Nun gibt es genau eine Kante [mm] $K_1$ [/mm] in [mm] $M_2$, [/mm] welche mit [mm] $P_1$ [/mm] inzidiert, und [mm] $K_1$ [/mm] liegt nicht in [mm] $M_1$ [/mm] (warum?). Damit liegt [mm] $K_1$ [/mm] in [mm] $M_1 \Delta M_2$. [/mm] Sei nun [mm] $P_2$ [/mm] der zweite Punkt von [mm] $K_1$, [/mm] und es gibt genau eine Kante [mm] $K_2$ [/mm] in [mm] $M_1$, [/mm] die mit [mm] $P_2$ [/mm] inzidiert. Kann diese Kante in [mm] $M_2$ [/mm] liegen? Faellt dir was auf?

LG Felix


Bezug
                
Bezug
Matching und Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 So 20.02.2011
Autor: hilado

Danke. Das hab ich jetzt verstanden :)

Bezug
        
Bezug
Matching und Kreise: Definition: Perfect Matching
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:51 So 20.02.2011
Autor: Al-Chwarizmi


> Die symmetrische Differenz [mm]M_{1} \Delta M_{2}[/mm] = [mm](M_{1}[/mm] \
> [mm]M_{2}) \cup (M_{2}[/mm] \ [mm]M_{1})[/mm] zweier verschiedener perfekter
> Matchings eines Graphen enthält mindestens einen Kreis.
>  Ich weiß leider nicht, wie man darauf kommt, dass man
> durch die symmetrische Differenz zweier verschiedener
> perfekter Matchings zu einem Kreis kommt. Kann man das
> irgendwie genauer erläutern ?


Guten Tag allerseits !

Graphentheorie hat mich früher einmal sehr beschäftigt -
als Gymnasiast meinte ich einmal, einen Beweis für den
Vierfarbensatz zu haben (damals das noch ungelöste
"Vierfarbenproblem") ...
Den Ausdruck "Matching" bzw. "perfektes Matching" habe
ich allerdings bisher nie gehört. Für alle denen es ebenso
ergeht, hier die entsprechenden Wiki-Links auf  
[]englisch: Matching oder  []deutsch: Paarung .

LG    Al

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]