matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral über die Glockenkurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Integral über die Glockenkurve
Integral über die Glockenkurve < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über die Glockenkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Di 12.10.2004
Autor: MAOAM

Hallo,

kann mir jemand helfen dieses Integral auszurechenen


[mm] \integral_{0}^{\infty} {e^{-x^{2}} dx} [/mm]

am besten über die Gamafunktion,
oder eben über die Polarkoordinaten,
vielen Dank schonmal.

        
Bezug
Integral über die Glockenkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Di 12.10.2004
Autor: andreas

hi

ich skizziere jetzt mal den weg, wie man dieses integral mittels gamma- und beta-funktion berechnen kann. sei [m] a, b > 0[/m], dann definiert man
[m] \Gamma (a) := \int_0^\infty x^{a-1}e^{-x} \, \text{d}x [/m]
[m] B (a, b) := \int_0^1 x^{a-1}(1-x)^{b-1} \, \text{d}x [/m]


nun kann man zeigen (das ist im prinzip auch schon das aufwendigste an diesem beweis: man muss integrationsreihenfolgen vertauschen soweit ich mich erinnere - den beweis findest du aber in recht vielen büchern oder im internet):
[m] B (a, b) = \frac{\Gamma(a) \Gamma (b) }{\Gamma(a+b)} [/m]


setzt du nun [m] a:= \frac{1}{2}, b := \frac{1}{2} [/m], so erhälst - da [m] \Gamma \left (\frac{1}{2} + \frac{1}{2} \right) = \Gamma(1) = 1 [/m] und [m] \Gamma \left( \frac{1}{2} \right) = 2 \int_0^\infty e^{-x^2} \, \text{d}x [/m]:
[m] (\star) \qquad \qquad B \left( \frac{1}{2}, \frac{1}{2} \right) = \Gamma \left( \frac{1}{2} \right) ^2 = \left( 2 \int_0^\infty e^{-x^2} \, \text{d}x \right)^2 [/m].


jedoch kann man den wert von [m] B \left( \frac{1}{2}, \frac{1}{2} \right) [/m] jetzt elementar bestimmen:
[m] B \left( \frac{1}{2}, \frac{1}{2} \right) = \int_0^1 \frac{\text{d}x}{\sqrt{x-x^2}} = \int_0^1 \frac{\text{d}x}{\sqrt{\frac{1}{4} - (x-\frac{1}{2})^2}} [/m]
mit der substitution  [m] x = \frac{1}{2} + \frac{1}{2} \sin \theta [/m] kann man dieses integral berechnen und erhält dann [m] B \left( \frac{1}{2}, \frac{1}{2} \right) = \pi [/m].

setzt man dieses ergebnis in die gleichung [m] (\star) [/m] ein, so erhält man [m] \left( 2 \int_0^\infty e^{-x^2} \, \text{d}x \right)^2 = \pi [/m] und damit dann insgesamt
[m] \int_0^\infty e^{-x^2} \, \text{d}x = \frac{\sqrt{\pi}}{2} [/m].


schau mal, ob du mit dieser skizze schon was anfangen kannst. die fehlenden schritte sollten eigentlich recht einfach selbst zu rechnen sein. wenn du irgendwo hängst oder etwas unklar ist, frage einfach nochmal nach.

grüße
andreas

Bezug
        
Bezug
Integral über die Glockenkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 12.10.2004
Autor: Philipp-ER

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hi.
Hier noch ein anderer Weg (Quelle: Heuser; endlich mal nicht wie üblicherweise bei dieser Beweisart mit gar nicht definierten R-Integralen über unbeschränkte Teile der x-y-Ebene oder sonstigen unsauberen Sachen, sondern schön mit Grenzübergang):
$K_{\rho}=\biggl\{{x\choose y}:x^2+y^2\leq \rho^2\mbox{ und }x,y\geq 0\biggr\}$,
$Q_a=\biggl\{{x\choose y}:0\leq x\leq a, 0\leq y\leq a\biggr\}$
Zeige, dass
$\int_{K_{\rho}}\mbox{e}^{-(x^2+y^2)}d(x,y)=\frac{\pi}{4}(1-\mbox{e}^{-\rho^2})\bigr}$
und
$\int_{Q_a}\mbox{e}^{-(x^2+y^2)}d(x,y)=\biggl(\int_0^a \mbox{e}^{-x^2}dx\biggr)^2$
Mit a gehen auch der Radius des größten in $Q_a$ enthaltenen Viertelkreises $K_{\rho_1}$ und der Radius des kleinsten, $Q_a$ enthaltenen Viertelkreises $K_{\rho_2}$ gegen $+\infty$. Gewinne daraus den Wert des gesuchten Integrals.
Gruß
Philipp

Bezug
                
Bezug
Integral über die Glockenkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mi 13.10.2004
Autor: MAOAM

aha, danke soweit,
kannst du mir bitte auch den Weg über die Polarkoordinaten erklären?

denn ich komme bei
[mm] \integral_{0}^{2\pi}\integral_{0}^{\infty} {re^{-r^{2}} dr d\phi} [/mm]
auf etwa [mm] \pi [/mm]

Bezug
                        
Bezug
Integral über die Glockenkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Mi 13.10.2004
Autor: Julius

Hallo MAOAM!

> aha, danke soweit,
>  kannst du mir bitte auch den Weg über die Polarkoordinaten
> erklären?
>  
> denn ich komme bei
>   [mm]\integral_{0}^{2\pi}\integral_{0}^{\infty} {re^{-r^{2}} dr d\phi} [/mm]
>  
> auf etwa [mm]\pi [/mm]

Das ist ja auch richtig. :-) Es gilt aber (ich vernachlässige jetzt mal die Bedenken, die Philipp zu Recht geäußert hat, wenn wir mit dem Riemann-Integral rechnen):

[mm] $\left( \int_{\IR} e^{-x^2}\, dx \right)^2 [/mm] = [mm] \int_{\IR} \int_{\IR} e^{-x^2 - y^2}\, [/mm] dxdy = [mm] \integral_{0}^{2\pi}\integral_{0}^{\infty} {re^{-r^{2}} dr d\phi} [/mm] = [mm] \pi$, [/mm]

also:

[mm] $\int_0^{\infty} e^{-x^2}\, [/mm] dx = [mm] \frac{1}{2} \cdot \int_{\IR} e^{-x^2}\, [/mm] dx = [mm] \frac{\sqrt{\pi}}{2}$. [/mm]

Liebe Grüße
Julius


Bezug
                                
Bezug
Integral über die Glockenkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Mi 13.10.2004
Autor: MAOAM

Achso jetzt  leuchtet es mir ein wow, ok danke, liebe grüssse, sergej.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]