matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Grenzwert zeigen
Grenzwert zeigen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 10.12.2004
Autor: Shaguar

Moin,
habe nen Problem mit ner Grenzwertaufgabe bin auf dem Gebiet absolut schlecht glaub ich.
Wäre also ziemlich hilfreich wenn man bei der Antwort ungefähr sagt was ihr gemacht habt.

Ich soll zeigen, dass die Folge [mm] x_n [/mm] den Grenzwert 1 besitzt.

[m]x_n = (1-\bruch{1}{n^2})^n[/m]

Jetzt kann ich die Folge doch mit der Bernoulliungleichung umschreiben.

[m](1-\bruch{1}{n^2})^n \ge 1-\bruch{1}{n}[/m]  (das n habe ich schon gekürzt)

für die neue Folge kenne ich ja den Grenzwert und der ist 1.
Wie zeige ich jetzt die Gleichheit, der beiden? Oder ist mein Ansatz falsch?

Für Hilfe sehr dankbar

Shaguar

        
Bezug
Grenzwert zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Fr 10.12.2004
Autor: freaKperfume

Hallo,

du bist eigentlich schon fertig - du musst die Folge nur noch "von der anderen Seite" abschätzen. Der Term in der Klammer [mm]\left(1-\bruch{1}{n^2}\right)[/mm] liegt immer zwischen 0 und 1, wie man leicht sehen kann (denn [mm] $n\in\IN$). [/mm] Dann liegt auch [mm]\left(1-\bruch{1}{n^2}\right)^n[/mm] zwischen 0 und 1, ist also insbesondere immer kleiner als 1.

Also:
[mm]1 > \left(1-\bruch{1}{n^2}\right)^n \ge 1-\bruch{1}{n}[/mm]

Für die rechte Folge ist der Grenzwert 1. Daraus folgt schon der Grenzwert deiner Folge, denn (anschaulich gesprochen) [mm] $x_n$ [/mm] ist einerseits immer kleiner als 1, andererseits größer als eine Folge, die beliebig nahe an die 1 herankommt. Also muss auch [mm] $x_n$ [/mm] beliebig nahe an 1 herankommen.

- Marcel

Bezug
        
Bezug
Grenzwert zeigen: Anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 21:16 Fr 10.12.2004
Autor: Marcel

Hallo,

> Moin,
>  habe nen Problem mit ner Grenzwertaufgabe bin auf dem
> Gebiet absolut schlecht glaub ich.
> Wäre also ziemlich hilfreich wenn man bei der Antwort
> ungefähr sagt was ihr gemacht habt.
>  
> Ich soll zeigen, dass die Folge [mm]x_n[/mm] den Grenzwert 1
> besitzt.
>  
> [m]x_n = (1-\bruch{1}{n^2})^n[/m]
>  
> Jetzt kann ich die Folge doch mit der Bernoulliungleichung
> umschreiben.
>  
> [m](1-\bruch{1}{n^2})^n \ge 1-\bruch{1}{n}[/m]  (das n habe ich
> schon gekürzt)

Mal ein anderer Ansatz:
Es gilt [mm] $\forall [/mm] n [mm] \in \IN$: [/mm]
[mm]\left(1-\bruch{1}{n^2}\right)^n =\left(1+\frac{1}{n}\right)^n*\left(1-\frac{1}{n}\right)^n[/mm]

Jetzt mußt du dir überlegen, wie du nachweisen kannst, dass die Folge[m]\left(\left(1-\frac{1}{n}\right)^n\right)_{n \in \IN}[/m] gegen [m]\frac{1}{e}[/m] konvergiert.
(Tipps dazu: Erst mal nennergleich machen, dann den Bruch in einen Doppelbruch umschreiben und dann vielleicht eine Indexverschiebung um 1 (bei Betrachtung des Grenzwertes!) und sich erinnern, dass die Folge [m]\left(\left(1+\frac{1}{n}\right)^{n+1}\right)_{n \in \IN}[/m] auch gegen $e$ konvergiert.)
Da du (hoffentlich) weißt, dass [m]\left(\left(1+\frac{1}{n}\right)^n\right)_{n \in \IN}[/m] gegen $e$ konvergiert, erhältst du dann tatsächlich $1$ als Grenzwert deiner Folge [m](x_n)_{n \in \IN}[/m].

Viele Grüße,
Marcel

Bezug
                
Bezug
Grenzwert zeigen: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 Sa 11.12.2004
Autor: Shaguar

Moin,
Danke an den ersten Marcel, ich werde deine/meine Lösung nehmen und noch irgendwie zeigen, dass die Folge monoton wächst. Ich denke mal das wird reichen.
Danke an den 2. Marcel du hast mir den zweiten Teil jetzt ziemlich einfach gemacht, da ich hier nämlich zeigen sollte:

[m] \limes_{n\rightarrow\infty} \left(\left(1-\frac{1}{n}\right)^n\right)_{n \in \IN}=e^{-1}[/m]

Dies fällt mir nun denkbar leicht.

Das hier: [m]\left(\left(1+\frac{1}{n}\right)^n\right)_{n \in \IN}[/m]   haben wir in der Vorlesung bewiesen ich bräuchte ja nur den Beweis etwas umschreiben für minus statt plus.

Gruß und Frohe Weihnachten

Shaguar


Bezug
        
Bezug
Grenzwert zeigen: Nachfrage Monotonie
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:16 Sa 11.12.2004
Autor: Shaguar

Moin,
habe jetzt die Monotonie folgendermaßen bewiesen mit dem Tip vom Tutor, dass wenn [m]a_n \le b_n[/m] gilt auch [m]\forall n \in \IN \limes_{n\rightarrow\infty}a_n \le \limes_{n\rightarrow\infty}b_n [/m].

[mm] a_n [/mm] und [mm] b_n [/mm] kann ich ja folgendermaßen definieren:

[m]a_n = (1-\bruch{1}{n^2})^n [/m]
[m]b_n = (1-\bruch{1}{(n+1)^2})^{n+1} [/m]

Dadurch ergibt sich ja das gleiche was ich sowieso für die Monotonie zeigen soll nämlich:
[m](1-\bruch{1}{n^2})^n \le (1-\bruch{1}{(n+1)^2})^{n+1}[/m]

Dass [mm] a_n \le b_n [/mm] sieht man ja sofort durch die höhere Potenz. Und das die Limites gleich sind ist ja dann im Endeffekt auch logisch, da das n ja gegen [mm] \infty [/mm] läuft und es hier dann nicht mehr auf eins mehr oder weniger ankommt, man aber doch gezeigt hat, dass [mm] a_n \le b_n [/mm] und somit die steigende Monotonie von [mm] a_n [/mm] selber.

Ist das jetzt wirklich so einfach oder habe ich hier Schlüsse gezogen, die ich gar nicht ziehen darf?

Vielen Dank an denjenigen, der mir meinen Gedankengang ein wenig korrigiert.

Gruß Shaguar

Bezug
                
Bezug
Grenzwert zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Do 16.12.2004
Autor: Stefan

Hallo!

Ich sehe nicht, wie das zum Ziel führen soll. Und so schnell sieht man die Monotonie nicht. Halte dich lieber an den Tip von Marcel, der ist super! :-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]