matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert einer Fkt.
Grenzwert einer Fkt. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mi 13.01.2010
Autor: jogi87

Aufgabe
berechne folgenden Grenzwert:

[mm] \limes_{x\rightarrow\ a}\bruch{x^{n}-a^{n}}{x-a} [/mm]

Hinweis:
[mm] x^{n}-a^{n}=(x-a)*\summe_{k=0}^{n-1}x^{k}*a^{n-1-k} [/mm]

Hallo!

Mit dem Hinweis kürzt sich ja (x-a) heraus, dann bleibt nur noch die Summe stehen.
Irgendwie kann ich diese aber nicht berechnen, da keine Teleskopsumme auftaucht wenn ich mir einzelne Glieder aufschreibe.
Oder bleibt nur das erste glied stehen, da die Summe nur bis n-1 läuft?

Danke für die Hilfe

        
Bezug
Grenzwert einer Fkt.: einsetzen
Status: (Antwort) fertig Status 
Datum: 14:01 Mi 13.01.2010
Autor: Roadrunner

Hallo jogi!


Setze einfach innerhalb der verbleibenden Summe für jedes $x_$ ein $a_$ ein. Was erhältst Du?


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwert einer Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mi 13.01.2010
Autor: jogi87

HAllo!

Danke für den Tipp,

wenn ich einsetze:

[mm] (1*a^{n-1})+(a*a^{n-2})+...+(a^{n-1}*1) [/mm]

Zusammengefasst:

[mm] a^{n-1}+a^{n-1}+a^{n-1}+... [/mm]

und das ganze n - mal
Also in mein Grenzwert [mm] n*a^{n-1} [/mm]

oder?
Danke und gruß

Johannes

Bezug
                        
Bezug
Grenzwert einer Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Mi 13.01.2010
Autor: schachuzipus

Hallo Johannes,

> HAllo!
>  
> Danke für den Tipp,
>  
> wenn ich einsetze:
>  
> [mm](1*a^{n-1})+(a*a^{n-2})+...+(a^{n-1}*1)[/mm]
>  
> Zusammengefasst:
>  
> [mm]a^{n-1}+a^{n-1}+a^{n-1}+...[/mm]
>  
> und das ganze n - mal
>  Also in mein Grenzwert [mm]n*a^{n-1}[/mm] [ok]

Oder "schöner" direkt in der Summe eingesetzt und Potenzgesetze benutzt:

[mm] $\lim\limits_{x\to a} ...=\sum\limits_{k=0}^{n-1}\underbrace{a^k\cdot{}a^{n-1-k}}_{=a^{n-1}}=n\cdot{}a^{n-1}$ [/mm]

>  
> oder?

Ja, ist richtig!

>  Danke und gruß
>  
> Johannes


LG

schachuzipus

Bezug
                                
Bezug
Grenzwert einer Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mi 13.01.2010
Autor: jogi87

OK - Danke!

bis zum nächsten mal...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]