matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGleichungssystem Extrema +NB
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichungssystem Extrema +NB
Gleichungssystem Extrema +NB < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem Extrema +NB: Hilfe/Tipps beim Lösen
Status: (Frage) beantwortet Status 
Datum: 12:31 Mo 04.02.2013
Autor: v6bastian

Aufgabe
A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

A2: f(x,y) = 4xy ; NB = 4x²+9y²=36

Hallo zusammen.

Ich stagniere ein wenig an dem Gleichungssystemen zweier Aufgaben. Könntet Ihr bitte Tipps geben und ggf. beim Lösen helfen.

Mit der Gaus'schen Elimination kam ich wegen den Potenzen und der Tatsache das zwei Unbekannte in einem Term stehen nicht weiter. Und beim Addieren, Subtrahieren, Multiplizieren und Dividieren fehlt es mir Wohl an Weitblick bzw. Ideen. Was kam an der Stelle generell tun? Gibt es hierfür ein gesondertes Verfahren?

Mein Ansatz bei A1 war:

A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

[mm] f_{x} [/mm] = 3x²-y ; [mm] f_{y} [/mm] = 2y-x
[mm] NB_{x} [/mm] = 2x   ; [mm] NB_{y} [/mm] = 1

Folgendes G-System folgt daraus:

3x² -  y  + k2x =0
-x  + 2y + k1   =0
x²  +  y           =0

Mein Ansatz bei A2 war:

A2: f(x,y) = 4xy ; NB = 4x²+9y²=36

[mm] f_{x} [/mm] = 4y ; [mm] f_{y} [/mm] = 4x
[mm] NB_{x} [/mm] = 8x   ; [mm] NB_{y} [/mm] = 18y

Folgendes G-System folgt daraus:

4y + k8x   =0
4x + k18y =0
4x²+ 9y²  =36

Danke im Voraus
Bastian

        
Bezug
Gleichungssystem Extrema +NB: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mo 04.02.2013
Autor: angela.h.b.


Hallo,

Gleichungssysteme, die nicht linear sind, können ja sehr verschieden ausfallen.
Eine allgemeingültige Vorgehensweise, die immer funktioniert, gibt  es nicht.
Bei Lagrangeaugaben ist es oftmals gut, wenn man zunächst einmal den Parameter [mm] \lambda [/mm] (bzw. bei Dir:k) rauswirft, denn es ist ja eine Hilfsvariable, für die man sich meist nicht weiter interessiert.
Ansonsten: gut ist, was die Sache einfach macht...
Viel Üben und selbst rechnen hilft mehr als lange Erklärungen.


> A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

>

> Mein Ansatz bei A1 war:
>  
> A1: f(x,y) = x³+y²-xy ; NB = x²+y=0
>  
> [mm]f_{x}[/mm] = 3x²-y ; [mm]f_{y}[/mm] = 2y-x
>  [mm]NB_{x}[/mm] = 2x   ; [mm]NB_{y}[/mm] = 1

Ja.

>  
> Folgendes G-System folgt daraus:
>  
>   I.3x² -  y  + k2x =0
>  II. -x  + 2y + k1   =0
>  III.x²  +  y           =0

Genau.

A.
Ich würde bei diesem Gleichungssystem damit beginnen,  II. nach k aufzulösen,  und dieses k in I. und III. einzusetzen.

Ergibt:
  I'. [mm] 0=3x^2-y+(x-2y)*2y=3x^2-y+2xy-4y^2 [/mm]
III'. [mm] x^2+y=0. [/mm]

Nun kannst Du III' nach y auflösen, in I' einsetzen und die möglichen x-Werte errechnen.

B.
Fall Du damit beginnen möchtest, zunächst das k in I. freizustellen, mußt Du den Fall, daß x=0 ist, gesondert untersuchen.

Für [mm] x\not=0 [/mm] bekommst Du [mm] k=\bruch{y-3x^2}{2x}, [/mm] setzt in II. ein, und machst damit irgendwie weiter.
Für x=0 bekommst Du  "automatisch" aus I. auch y=0, eingesetzt in II. k=0, und eingesetzt in III. eine wahre Aussage. (0|0) ist also ein kritischer  Punkt

C.
Du könntest auch zunächst aus III. [mm] y=-x^2 [/mm] gewinnen, dies in die beiden anderen Gleichungen einsetzen und gucken, wie Du weiterkommst.

D.
In der Tat  könntest Du  durch passendes Addieren von Gleichungen in 2 der Gleichungen das y schnell loswerden,
oder das Quadrat in der ersten Gleichung herauswerfen.
Vieles ist möglich.

Am besten beginnst Du mal, und wenn Du nicht zur Lösung kommst, zeige mal vor, was Du getan und gerechnet hast.







> A2: f(x,y) = 4xy ; NB = 4x²+9y²=36
>  
> Mein Ansatz bei A2 war:
>  
>  
> [mm]f_{x}[/mm] = 4y ; [mm]f_{y}[/mm] = 4x
>  [mm]NB_{x}[/mm] = 8x   ; [mm]NB_{y}[/mm] = 18y
>  
> Folgendes G-System folgt daraus:
>  
> 4y + k8x   =0
>  4x + k18y =0
>  4x²+ 9y²  =36

Alles richtig bisher.
Vielleicht startest Du mal, nachdem Du Dich mit Aufg. 1 nach Anleitung vergnügt hast, hier einen eigenen Lösungsversuch.

LG Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]