matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Extremwertaufgabe
Extremwertaufgabe < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Hilfe,, weiß nicht weiter
Status: (Frage) beantwortet Status 
Datum: 00:31 Mo 08.12.2008
Autor: yuppi

Aufgabe
http://www.bilder-space.de/show.php?file=08.12DjXcGI39sEhyHuV.jpg

Hab die aufgabe gescannt

bin gerade bei notw. bed weiß aber gar nnich wie es weiter geht...
kommt mir vor wie ein ratespiel

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Mo 08.12.2008
Autor: schachuzipus

Hallo yuppi,

was genau ist denn da zu tun?

Willst du überprüfen, ob [mm] $f_a''(\sqrt{a})\neq [/mm] 0$ ist?

Dann ist schon fast alles richtig, du hast nur im Nenner im letzten Ausdruck ein "hoch3" vergessen [mm] $(a+a)^3=(2a)^3=8a^3$ [/mm]

Den Zähler kannst du zusammenfassen [mm] $8a\sqrt{a}-24a\sqrt{a}=-16a\sqrt{a}$ [/mm]

Du hast also [mm] $...=\frac{-16a\sqrt{a}}{8a^3}=-\frac{2\sqrt{a}}{a^2}$ [/mm]

Und das ist sicher [mm] $\neq [/mm] 0$

War das deine Frage?!

Kurz noch zu den Bedingungen:

Du scheinst nach einem Extrempunkt zu suchen.

Notwendige Bedingung ist, dass [mm] $f_a'(x)=0$ [/mm] ist, ist ja auch einleuchtend, denn die Tangente im Extrempunkt muss waagerecht verlaufen, also Steigung 0 haben

Hinreichende Bedingung ist, dass $f'(x)=0$ UND [mm] $f''(x)\neq [/mm] 0$ ist (>0: Minimum, <0: Maximum)

Notwendige Bedingung bedeutet, dass die Bedingung $f'(x)=0$ für die Existenz eines Extremums zwingend erforderlich ist, dh, wenn [mm] $f'(x)\neq [/mm] 0$ ist, liegt garantiert kein Extremum vor.

Falls aber $f'(x)=0$ ist, so reicht das nicht für die Existenz eines Extremums, es kann durchaus sein, dass f an der Stelle [mm] $x_0$ [/mm] kein Extremum hat, obwohl [mm] $f'(x_0)=0$ [/mm] gilt (Stelle dir einen Sattelpunkt vor)

Hinreichende Bedingung bedeutet (hier), dass - wenn die Bedingung erfüllt ist, der Sachverhalt zwingend eintritt (hier, dass die Funktion ein Extremum hat)

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]