matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationEinfache Integralberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Einfache Integralberechnung
Einfache Integralberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 02.06.2009
Autor: kegel53

Hallo MatheRaum-Team,
ich steh grad auf der Leitung. Kann mir jemand kurz sagen wie ich das Integral [mm] \int cos^2(x) [/mm] dx berechne? Vielen Dank.

        
Bezug
Einfache Integralberechnung: 2 Wege
Status: (Antwort) fertig Status 
Datum: 19:22 Di 02.06.2009
Autor: Loddar

Hallo Kegel!


Entweder wendest Du hier partielle Integration für [mm] $\cos^2(x) [/mm] \ = \ [mm] \cos(x)*\cos(x)$ [/mm] an.


Oder Du wendest folgendes Additionstheorem an:
[mm] $$\cos^2(x) [/mm] \ = \ [mm] \bruch{1}{2}*\left[\cos(2x)+1\right]$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Einfache Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 02.06.2009
Autor: kegel53

Alles klar mit dem Additionstheorem funktioniert das wunderbar. Nur durch partielle Integration komm ich nicht weiter, da ich dann beim zweiten Mal partiell integrieren wieder denselben Ausdruck dastehn habe wie zuvor nämlich [mm] ...+\int cos^2(x). [/mm] Wär super wenn man mir noch den anderen Weg zum Berechnen des Integrals erklären könnte. Danke schon mal.

Bezug
                        
Bezug
Einfache Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Di 02.06.2009
Autor: Marcel

Hallo,

> Alles klar mit dem Additionstheorem funktioniert das
> wunderbar. Nur durch partielle Integration komm ich nicht
> weiter, da ich dann beim zweiten Mal partiell integrieren
> wieder denselben Ausdruck dastehn habe wie zuvor nämlich
> [mm]...+\int cos^2(x).[/mm] Wär super wenn man mir noch den anderen
> Weg zum Berechnen des Integrals erklären könnte. Danke
> schon mal.

[mm] $$\int \cos^2(x)\;dx=\int \underbrace{\cos(x)}_{=u(x)}*\underbrace{\cos(x)}_{=v'(x)}\;dx=[\cos(x)*\sin(x)]-\int \big(-\sin(x)\big)*\sin(x)\;dx=[\sin(x)*\cos(x)]+\int \sin^2(x)\;dx$$ [/mm]
[mm] $$\blue{\underset{\substack{\text{beachte: }\displaystyle \sin^2(x)=1-\cos^2(x) \text{ und }\\ \displaystyle \integral (1-\cos^2(x))\;dx=\displaystyle \int 1\;dx-\int \cos^2(x)\;dx}}{=}}\displaystyle [\sin(x)*\cos(x)]+\int 1\;dx -\int \cos^2(x)\;dx\,$$ [/mm]
[mm] $$\green{\underset{\text{bea.: }\displaystyle\int 1\;dx=x}{\Longrightarrow}}$$ [/mm]
[mm] $$\int \cos^2(x)\;dx=[\sin(x)*\cos(x)]+x-\int \cos^2(x)\;dx$$ [/mm]
[mm] $$\gdw$$ [/mm]
$$2 [mm] \int \cos^2(x)\;dx=\sin(x)*\cos(x)+x$$ [/mm]
[mm] $$\gdw$$ [/mm]
[mm] $$\int \cos^2(x)\;dx=\frac{1}{2}\big(\sin(x)*\cos(x)+x\big)\,.$$ [/mm]

Anders gesagt:
$$F: [mm] \IR \to \IR\;\; \text{ definiert durch }\;\;F(x):=\frac{1}{2}\big(\sin(x)*\cos(x)+x\big)\;\;\;\;(x \in \IR)$$ [/mm]
ist eine Stammfunktion (oder ein Repräsentant der Klasse der Stammfunktionen) von
$$f: [mm] \IR \to \IR\;\; \text{ definiert durch }\;\;f(x):=\cos^2(x)\;\;\;\;(x \in \IR)\,.$$ [/mm]

Wenn Du magst, kannst Du oben auch Konstanten (genauer: konstante Funktionen!) in der Rechnung ergänzen, um damit dann alle Stammfunktionen von [mm] $f\,$ [/mm] anzugeben.

Gruß,
Marcel

Bezug
                                
Bezug
Einfache Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Di 02.06.2009
Autor: kegel53

WOW, das nenn ich mal eine ausführliche Antwort :-). Dank dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]