matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit der p-Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit der p-Norm
Differenzierbarkeit der p-Norm < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit der p-Norm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:08 Fr 01.06.2012
Autor: Gedro

Aufgabe
Zeige dass die Funktion
[mm] f_{p}:\IR^n\to \IR, x\mapsto \parallel x\parallel_{p} [/mm] = [mm] (\summe_{i=1}^{n} |x_{i}|^{p})^{\bruch{1}{p}} [/mm]
in allen [mm] x\in\IR^{n}\backslash [/mm] {0} differenzierbar ist für [mm] n\in\IN [/mm] und [mm] p\in (1,\infty). [/mm]



Hallo,

ich wollte die Differenzierbarkeit über die stetige partielle Differenzierbarkeit zeigen. Stoße dort aber auf ein kleines Problem.
Zu aller erst habe ich gezeigt, dass die Funktion [mm] g(x)=|x|^{p} [/mm] auf ganz [mm] \IR [/mm] stetig differenzierbar ist für [mm] p\in (1,\infty) [/mm] mit [mm] g'(x)=\begin{cases} p*\bruch{x}{|x|}*|x|^{p-1}, & x \not=0\\ 0, & x=0 \end{cases}. [/mm]
Somit konnte ich dann die partiellen Ableitungen bestimmen:

[mm] \bruch{\partial f}{x_{i}}(x)=\begin{cases} \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{(|x_{1}|^{p}+...+|x_{n}|^{p})^\bruch{p-1}{p}}, & x_{i}\not=0 \\ 0, & x_{i} = 0 \end{cases} [/mm]

Da [mm] x\in\IR^{n}\backslash [/mm] {0} muss ich mir um den Nenner keine Sorgen machen, dass er 0 wird.
Nun möchte ich zeigen, dass die partielle Ableitung stetig ist. Dies klappt auch für alle [mm] x\in\IR^{n}\backslash [/mm] {0} bis auf den Fall, dass wenn [mm] x\in [/mm] ist. Das heisst, dass alle Einträge im Vektor 0 sind, bis auf [mm] x_{i}. [/mm] Dann hätte ich nämlich stehen:


[mm] \bruch{\partial f}{x_{i}}(x) [/mm] =  [mm] \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{(0+...+|x_{i}|^{p}+...+0)^\bruch{p-1}{p}} [/mm] =  [mm] \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{|x_{i}|^{p-1}} [/mm] =  [mm] p*\bruch{x_{i}}{|x_{i}|} [/mm]

Für [mm] \limes_{x\rightarrow 0} [/mm] ex. der Grenzwert aber nicht und somit wäre die partielle Ableitung an dieser Stelle auch nicht stetig.
Hat das eventuell etwas damit zu tun, dass ich durch die Limesbetrachtung mich dem Nullvektor annähere, in der die Funktion f nicht partiell differenzierbar ist?

Mache ich irgendwo einen Fehler oder muss ich über einen anderen Ansatz an die Aufgabe dran?

Gruß,
Gedro

        
Bezug
Differenzierbarkeit der p-Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 04.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]