matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Fr 18.04.2014
Autor: rollroll

Aufgabe
Seien [mm] f_1, f_2, [/mm] ..., [mm] f_n [/mm] differenzierbare Funktionen und sei [mm] \pi:\IR^{n}\to\IR [/mm] eine lineare Abbildung.
Zeige, dass die Funktion [mm] g:\IR\to\IR, x\to\pi((f_1(x),...,f_n(x))) [/mm] differenzierbar ist und berechne g'.


Hallo.

folgt die Differenzierbarkeit nicht unmittelbar aus der Kettenregel der Differenzialrechnung? Wäre g' dann nicht [mm] \pi'*f_1'(x)*...*f_n'(x) [/mm] ?

Differenzialrechnung im [mm] \IR^n [/mm] haben wir eigentlich auch noch gar nicht...

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Fr 18.04.2014
Autor: fred97


> Seien [mm]f_1, f_2,[/mm] ..., [mm]f_n[/mm] differenzierbare Funktionen und
> sei [mm]\pi:\IR^{n}\to\IR[/mm] eine lineare Abbildung.
>  Zeige, dass die Funktion [mm]g:\IR\to\IR, x\to\pi((f_1(x),...,f_n(x)))[/mm]
> differenzierbar ist und berechne g'.
>  
> Hallo.
>  
> folgt die Differenzierbarkeit nicht unmittelbar aus der
> Kettenregel der Differenzialrechnung?

Ja

> Wäre g' dann nicht
> [mm]\pi'*f_1'(x)*...*f_n'(x)[/mm] ?

Das stimmt so nicht !


>  
> Differenzialrechnung im [mm]\IR^n[/mm] haben wir eigentlich auch
> noch gar nicht...


Beachte: es gibt [mm] a_n,...,a_n \in \IR [/mm] mit

[mm] \pi(x_1,...,x_n)=a_1x_1+....+a_nx_n [/mm]


FRED

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 18.04.2014
Autor: rollroll

Danke schon mal!

Wie kann ich denn den Beweis, dass g differenzierbar ist mathematisch korrekt aufschreiben? Es reicht wohl nicht, wenn ich hin schreibe, dass das aus der Kettenregel folgt...

Für die Ableitung bräuchte ich noch einen Tipp. Müsste man noch vor jedes f' das entsprechende [mm] a_i [/mm] schreiben?



Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Fr 18.04.2014
Autor: fred97

[mm] \pi (f_1(x),...,f_n(x))=a_1f_1f(x)+...+a_nf_n(x) [/mm]

FRED

Bezug
                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 18.04.2014
Autor: rollroll

Also: [mm] a_1f_1'(x) [/mm] + ... + [mm] a_nf_n'(x)? [/mm]

Bezug
                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 18.04.2014
Autor: fred97


> Also: [mm]a_1f_1'(x)[/mm] + ... + [mm]a_nf_n'(x)?[/mm]  

Ja

FRED


Bezug
                                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Fr 18.04.2014
Autor: rollroll

Super!

Und wie kann ich jetzt mathematisch korrekt beweisen, dass g diffbar ist?

Bezug
                                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 18.04.2014
Autor: fred97


> Super!
>  
> Und wie kann ich jetzt mathematisch korrekt beweisen, dass
> g diffbar ist?

Summen und skalare Vielfache differenzierbarer Funktionen sind differenzierbar.

Hattet Ihr das nicht ?

FRED


Bezug
                                                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Fr 18.04.2014
Autor: rollroll

Muss man nicht noch irgendwo berücksichtigen dass es sich um lineare Abbildungen des [mm] IR^n [/mm] handelt?

Bezug
                                                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Sa 19.04.2014
Autor: fred97


> Muss man nicht noch irgendwo berücksichtigen dass es sich
> um lineare Abbildungen des [mm]IR^n[/mm] handelt?  

Das haben wir doch schon mit



$ [mm] \pi(x_1,...,x_n)=a_1x_1+....+a_nx_n [/mm] $


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]