matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteBeweis mit Eigenwert/-raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Beweis mit Eigenwert/-raum
Beweis mit Eigenwert/-raum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Eigenwert/-raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Mo 16.06.2008
Autor: DerGraf

Aufgabe
Sei V ein endlichdimensionaler K-Vektorraum, A,B [mm] \in [/mm] Hom(V,V).
Zeige: [mm] \sigma(AB)=\sigma(BA). [/mm]

Hinweis: Ist W ein Eigenraum zu einem Eigenwert von AB, so betrachte BW).

Was kann ich denn über beliebige Matrizen A und B für Aussagen über ihre Eigenwerte und Eigenräume treffen?
Also ich weiß, dass AB diagonalisierbar ist (und somit auch kommutativ), wenn [mm] V=\sum_{i=1}^{m} V(a_i)(,es [/mm] ist hierbei die direkte Summe gemeint,) ist.
Mit dem Hinweis kann ich leider auch nicht sehr viel anfangen, da ich bei beliebigen Matrizen doch gar keine Eigenwerte ermitteln kann.
Kann mir vielleicht einer weiterhelfen?

        
Bezug
Beweis mit Eigenwert/-raum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Di 17.06.2008
Autor: fred97

Es genügt, zu zeigen:

Ist t ein Eigenwert von AB, so ist t ein Eigenwert von BA.

Sei also t ein Eigenwert von AB.

Fall 1:  t=0. Dann ist det(AB) = 0. Wegen det(BA) = det(AB) folgt det(BA) =0, also ist t=0 ein Eigenwert von BA.

Fall2: t ist ungleich Null. Es existiert ein x in V mit x ungleich Null und

ABx=tx. Setze nun y=Bx. Dann ist y ungleich Null, denn anderenfalls wäre dann  tx=Ay=0, also t=0 oder x=0, was aber nicht der Fall ist. Also ist y von Null verschieden.

Nun gilt: BAy= BABx= B(AB)x =B(tx)= tBx= ty. Also ist t Eigenwert von BA.


FRED

Bezug
                
Bezug
Beweis mit Eigenwert/-raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:32 Di 17.06.2008
Autor: DerGraf

Danke für deine schnelle Hilfe.
Aber woher weiß ich eigentlich, dass diese Eigenwerte überhaupt exisitieren? Kann ich einfach davon ausgehen?

Bezug
                        
Bezug
Beweis mit Eigenwert/-raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Di 17.06.2008
Autor: angela.h.b.


> Danke für deine schnelle Hilfe.
>  Aber woher weiß ich eigentlich, dass diese Eigenwerte
> überhaupt exisitieren? Kann ich einfach davon ausgehen?

Hallo,

in der Aufgabe zeigen sollst Du: wenn AB und BA Eigenwerte haben, sind sie gleich.

Davon, daß Du zeigen sollst, daß AB einen Eigenwert hat, ist nicht die Rede. Das würde ja auch nicht klappen.

Gruß v. Angela



Bezug
                                
Bezug
Beweis mit Eigenwert/-raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:49 Di 17.06.2008
Autor: DerGraf

Gut, jetzt hab ich es geschnallt. Vielen Dank euch beiden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]