matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBaumdiagramm und Gegenereignis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Baumdiagramm und Gegenereignis
Baumdiagramm und Gegenereignis < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Baumdiagramm und Gegenereignis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Do 03.01.2013
Autor: MatheSckell

Aufgabe
Beim schießen mit einem Fußball auf eine Torwand trifft der Spieler das untere Loch mit einer Wahrscheinlichkeit von 40% und das obere Loch mit einer Wahrscheinlichkeit von 20%. Der Spieler spielt so lange auf das untere Loch, bis er es trifft.

Wie groß ist die Wahrscheinlichkeit, dass er höchstens drei Versuche benötigt?

Ich habe mir für diese Aufgabe ein Baumdiagramm gezeichnet und dann so die Wahrscheinlichkeit ausgerechnet:

[mm] 0,4+0,6*0,4+0,6*0,6*0,4=0,784[/mm]

Die Lösung schlägt folgende Rechnung mit einem Gegenereignis vor:
[mm] 1-0,6^{3}=0,784 [/mm]

Kann mir das vielleicht jemand noch etwas genauer erklären wieso das so ist?

Vielen Dank!

        
Bezug
Baumdiagramm und Gegenereignis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Do 03.01.2013
Autor: Diophant

Hallo,

> Beim schießen mit einem Fußball auf eine Torwand trifft
> der Spieler das untere Loch mit einer Wahrscheinlichkeit
> von 40% und das obere Loch mit einer Wahrscheinlichkeit von
> 20%. Der Spieler spielt so lange auf das untere Loch, bis
> er es trifft.
>
> Wie groß ist die Wahrscheinlichkeit, dass er höchstens
> drei Versuche benötigt?
> Ich habe mir für diese Aufgabe ein Baumdiagramm
> gezeichnet und dann so die Wahrscheinlichkeit
> ausgerechnet:
>
> [mm]0,4+0,6*0,4+0,6*0,6*0,4=0,784[/mm]
>
> Die Lösung schlägt folgende Rechnung mit einem
> Gegenereignis vor:
> [mm]1-0,6^{3}=0,784[/mm]
>
> Kann mir das vielleicht jemand noch etwas genauer erklären
> wieso das so ist?

Das Gegenereignis lautet ja:

er braucht mindestens vier Versuche

Dazu muss er aber dreimal danebenschießen.

Allerdings: beide Rechnungen stehen im Widerspruch zur Aufgabe. Denn man müsste auch die Treffer in das obere Loch berücksichtigen. Oder kann es sein, dass es in dieser Teilaufgabe ausschließlich darum geht, dass das untere Loch getroffen werden muss?

EDIT: wer lesen kann, ist klar im  Vorteil! :-)


Gruß, Diophant

Bezug
        
Bezug
Baumdiagramm und Gegenereignis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Do 03.01.2013
Autor: luis52

Moin, steht in der Aufgabestellung etwas von Unabhaengigkeit? Wenn nicht, so ist die Aufgabe nicht loesbar.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]