matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasistransformationsmatrix T
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Basistransformationsmatrix T
Basistransformationsmatrix T < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformationsmatrix T: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 01.09.2006
Autor: Dnake

Aufgabe
Bestimmen Sie zur Matrix

A = [mm] \pmat{ 1 & 8 \\ 2 & 1 } [/mm] alle 2x2 Matrizen mit der Eigenschaft A*T=T*A


Habe das mal ausgerechnet und herausbekommen


T = [mm] \pmat{ 1/4t & t \\ 1/4t & t } [/mm]

t [mm] \in \IR [/mm]


Stimmt das?



        
Bezug
Basistransformationsmatrix T: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Fr 01.09.2006
Autor: EvenSteven


> T = [mm]\pmat{ 1/4t & t \\ 1/4t & t }[/mm]
>  
> t [mm]\in \IR[/mm]
>  
>
> Stimmt das?
>  
>  

Nein, setzte einfach mal t=1 ein und es funktioniert nicht.
[mm] A*T - T*A = 0 [/mm]
wobei
[mm] T = \pmat{ a & b \\ c & d } [/mm]

Damit durchrechnen und du kriegst ein 4x4 Gleichungssystem für die Unbekannten a,b,c und d. Hinweis: Es wird 2 freie Parameter geben.

Ciao

EvenSteven

Bezug
                
Bezug
Basistransformationsmatrix T: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Di 05.09.2006
Autor: Dnake

hallo,

ich habe da jetzt mit den a, b, c und d
gerechnet und dann folgende Gleichungen erhalten:

3a+6c-(3a+b)=0
a+2c-(3c+d) =0
3b+6d-(6a+2b)=0
b+2d-(6c+2d)=0

Da habe ich dann heraus b=6c

und a=d

muss ich jetzt b und a als freie Variablen definieren?
Habe mal u und t genommen und dann als Lösung das heraus:

X= [mm] \pmat{ u & 6t \\ t & u } [/mm]

Sieht mir aber merkwürdig aus.Stimmt das denn?

Bezug
                        
Bezug
Basistransformationsmatrix T: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Di 05.09.2006
Autor: Gonozal_IX

Also a=d stimmt schonmal.... beim anderen würde ich nochmal nachrechnen.
Vielleicht kannst ja auch mal darlegen, wie du auf deine Gleichungen kommst.

Gruß,
Gono.

Bezug
                                
Bezug
Basistransformationsmatrix T: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Di 05.09.2006
Autor: Dnake

Also ich habe wie oben beschrieben eine Matrix mit

T = [mm] \pmat{ a & b \\ c & d } [/mm]

genommen und jeweils A*T und T*A in ein Falk Schema geschrieben und dann die Formeln an der gleichen stelle im Schema mit der Bedingung
A*T=T*A -> A*T-T*A = 0
zusammen geschrieben und dann gerechnet.

Kann man das nicht so machen?




Bezug
                                        
Bezug
Basistransformationsmatrix T: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 05.09.2006
Autor: Gonozal_IX

Sicher, nur müsstest du dann auch aufs richtige Ergebnis kommen:

AT - TA = [mm] \pmat{ 1 & 8 \\ 2 & 1 }\pmat{ a & b \\ c & d } [/mm] - [mm] \pmat{ a & b \\ c & d }\pmat{ 1 & 8 \\ 2 & 1 } [/mm]

= [mm] \pmat{ a + 8c & b + 8d \\ 2a + c & 2b + d } [/mm] - [mm] \pmat{ a+2b & 8a + b \\ c + 2d & 8c +d } [/mm]

= [mm] \pmat{ 8c - 2b & 8d - 8a \\ 2a - 2d & 2b - 8c } [/mm] = [mm] \pmat{ 0 & 0 \\ 0 & 0 } [/mm]

Hast dich vielleicht bis dahin verrechnet? (oder ich mich? :D)

Bezug
                                                
Bezug
Basistransformationsmatrix T: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Di 05.09.2006
Autor: Dnake

hallo nochmal!

also der Fehler lag bei mir. habe 2 Aufgaben gleichen Typs und hab die durcheinander gebracht.
Also für


A= [mm] \pmat{ 1 & 8 \\ 2 & 1 } [/mm]

habe ich T = [mm] \pmat{ t & u \\ 1/4u & t } [/mm]

heraus.

Bin mir auch ziemlich sicher, daß das hinkommt :-)

Bezug
                                                        
Bezug
Basistransformationsmatrix T: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Di 05.09.2006
Autor: Gonozal_IX

Jop, nu stimmts.

Gruß,
Gono.

Bezug
        
Bezug
Basistransformationsmatrix T: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 05.09.2006
Autor: Gonozal_IX

doppelpost.....
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]