matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Ableitung
Ableitung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Stimmt die Ableitung?
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 18.01.2005
Autor: xErsanx23

[mm] f(x)=ln*(\bruch{1}{x}+x)= [/mm]

Ich glaube hier muss man die Produktregel anwenden.

f´(x)=x+ln(x)  ??????????????

Bin mir jetzt aber nicht so sicher ob es stimmt! Was ist eigentlich die Stammfunktion von ln?????

        
Bezug
Ableitung: Leider nicht richtig
Status: (Antwort) fertig Status 
Datum: 20:56 Di 18.01.2005
Autor: MathePower

Hallo,

die Ableitung von

[mm]f(x)\; = \;\ln (\frac{1}{x}\; + \;x)[/mm]

ist

[mm]\frac{{x^2 \; - \;1}}{{x\; + \;x^3 }}[/mm]

Die Stammfunktion von ln(x) ist x (ln(x)-1).

Gruss
MathePower



Bezug
                
Bezug
Ableitung: Frage zur Lösung
Status: (Frage) beantwortet Status 
Datum: 21:23 Di 18.01.2005
Autor: xErsanx23

Danke MathePower!!

Aber ich verstehe die Lösung nicht ganz. Man muss doch die Produktregel anwenden? Bei dieser Aufgabe wäre f(x)=ln; [mm] g(x)=(\bruch{1}{x}+x); [/mm]
Oder muss man erst ausklammern??? Ich kann doch nicht einfach ln ableiten. Nach ln muss doch eine Variable sein oder irre ich mich??

Gruss

Ersan

Bezug
                        
Bezug
Ableitung: Kein Produkt!
Status: (Antwort) fertig Status 
Datum: 21:32 Di 18.01.2005
Autor: Clemens

Hallo!

Bei dem Ausdruck

[mm]ln(\bruch{1}{x} + x)[/mm]

handelt es sich um kein Produkt. ln ist ja kein Faktor, sondern eine Funktion, an die das in der Klammer stehende übergeben wird. Genau so sind ja auch

[mm]sin(x)[/mm]

oder

[mm]e^{x}[/mm]

keine Produkte aus "sin" und "x" beziehungsweise "e" und "x".

Gruß Clemens

Bezug
                        
Bezug
Ableitung: Kettenregel
Status: (Antwort) fertig Status 
Datum: 01:55 Mi 19.01.2005
Autor: Marcel

Hallo Ersan,

wenn du [mm] $f(x)=\ln\left(\bruch{1}{x}+x\right)$ [/mm] ([mm]\forall x>0[/mm]) ableiten willst, so setze:
[mm] $g(x):=\ln(x)$, $h(x):=\frac{1}{x}+x$ [/mm]

Dann gilt nämlich $f(x)=(g [mm] \circ [/mm] h)(x)=g(h(x))$ und du kannst die MBKettenregel anwenden!

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]