matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Abbildungen
Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 21.11.2012
Autor: zjay

Aufgabe
Es seien f:X [mm] \rightarrow [/mm] Y und g : Y [mm] \rightarrow [/mm] Z Abbildungen.

a) Zeigen Sie: ist f surjektiv und g [mm] \circ [/mm] f injektiv, so ist g injektiv. Geben Sie Abbildungen f und g an, so dass gilt: g [mm] \circ [/mm] f ist injektiv und g ist nicht injektiv.

b) Zeigen Sie: Ist g [mm] \circ [/mm] f bijektiv, so ist f injektiv und g surjektiv. Geben Sie ein Beispiel an, so dass g [mm] \circ [/mm] f bijektiv, aber f nicht surjektiv und g nicht injektiv ist.

Hey,

auch zu dieser Aufgabe würde ich mir wünschen, dass ihr mal drüberschaut.

Meine Vorschläge

a)

Es seien f: X [mm] \rightarrow [/mm] Y und g: Y [mm] \rightarrow [/mm] Z
-Eine Abbildung heißt surjektiv, falls es zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X gibt, mit f(x) = y, d.h. falls f(X) = Y gilt.
-Eine Abbildung heißt injektiv, falls für alle x, x' [mm] \in [/mm] X gilt:
x [mm] \not= [/mm] x', so ist auch f(x) [mm] \not= [/mm] f(x').

Sei y [mm] \in [/mm] Y beliebig. Nach Voraussetzung gilt:

f:X [mm] \rightarrow [/mm] Y mit f(x) = y.

Da f:X [mm] \rightarrow [/mm] Y eine Abbildung von X nach Y ist, sind [mm] f(x_{1}), f(x_{2}) \in [/mm] Y.

Da f:X [mm] \rightarrow [/mm] Y eine Abbildung von X nach Y ist, sind [mm] f(x_{1}) [/mm] und [mm] f(x_{2}) \in [/mm] Y.
Nach Voraussetzung gilt für die Komposition mit [mm] f(x_{1}) [/mm] = [mm] f(x_{2} \in [/mm] Y :

[mm] g(f(x_{1})) [/mm] = [mm] g(f(x_{2})), [/mm] d.h. ( g [mm] \circ f)(x_{1}) [/mm] = (g [mm] \circ f)(x_{2}). [/mm]

Da g: Y [mm] \rightarrow [/mm] Z eine Abbildung von Y nach Z und
[mm] g(y_{1}), g(y_{2}) \in [/mm] Z.

Seien [mm] y_{1}, y_{2} \in [/mm] Y mit [mm] g(y_{1}) [/mm] = [mm] g(y_{2}). [/mm]

zu zeigen:

[mm] y_{1} [/mm] = [mm] y_{2} [/mm]

Da f:X [mm] \rightarrow [/mm] Y surjektiv und (g [mm] \circ f)(x_{1}) [/mm] = ( g [mm] \circ f)(x_{2}) [/mm] folgt.

[mm] g(f(x_{1}) [/mm] = [mm] g(f(x_{2}) \gdw g(y_{1}) [/mm] = [mm] g(y_{2}) [/mm]

D.h. aufgrund der Komposition g [mm] \circ [/mm] f folgt

[mm] y_{1} [/mm] = [mm] y_{2} [/mm]

Bsp.:

für Abbildung f und g:

g: [mm] \IR \rightarrow \IR_{\ge 0} [/mm]     g(x) = [mm] x_{2} [/mm]

f: [mm] \IR \ge [/mm] 0 [mm] \rightarrow \IR [/mm]     f(x) = [mm] \sqrt{x} [/mm]

(g [mm] \circ [/mm] f): [mm] \IR \rightarrow \IR [/mm]    (g [mm] \circ [/mm] f)(x) = g(f(x))= [mm] \sqrt{x^{2}} [/mm] = |x|

-g: X [mm] \rightarrow [/mm] Y ist nicht surjektiv, da für alle [mm] x_{1}, x_{2} \in [/mm] X mit der Eigentschaft [mm] f(x_{1}) [/mm] = [mm] f(x_{2}) [/mm] nicht [mm] x_{1} [/mm] = [mm] x_{2} [/mm] folgt.
-Komposition ist injektiv

b) folgt.

mfg,

zjay

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Do 22.11.2012
Autor: angela.h.b.


> Es seien f:X [mm]\rightarrow[/mm] Y und g : Y [mm]\rightarrow[/mm] Z
> Abbildungen.
>  
> a) Zeigen Sie: ist f surjektiv und g [mm]\circ[/mm] f injektiv, so
> ist g injektiv. Geben Sie Abbildungen f und g an, so dass
> gilt: g [mm]\circ[/mm] f ist injektiv und g ist nicht injektiv.

Hallo,

Vorüberlegungen:

> a)
>  
> Es seien f: X [mm]\rightarrow[/mm] Y und g: Y [mm]\rightarrow[/mm] Z
>  -Eine Abbildung f heißt surjektiv, falls es zu jedem y [mm]\in[/mm]
> Y ein x [mm]\in[/mm] X gibt, mit f(x) = y, d.h. falls f(X) = Y
> gilt.

>  -Eine Abbildung f heißt injektiv, falls für alle x, x' [mm]\in[/mm]
> X gilt:

ist

> x [mm]\not=[/mm] x', so ist auch f(x) [mm]\not=[/mm] f(x').


>  
> Sei y [mm]\in[/mm] Y beliebig. Nach Voraussetzung

[mm] "f:X\to [/mm] Y surjektiv"

> gilt:
>  

Es gibt ein [mm] x\in [/mm] X mit

>  f(x) = y.
>

> Da f:X [mm]\rightarrow[/mm] Y eine Abbildung von X nach Y ist, sind
> [mm]f(x_{1})[/mm] und [mm]f(x_{2}) \in[/mm] Y.
>  Nach Voraussetzung gilt für die Komposition mit [mm]f(x_{1})[/mm]
> = [mm]f(x_{2} \in[/mm] Y :
>  
> [mm]g(f(x_{1}))[/mm] = [mm]g(f(x_{2})),[/mm] d.h. ( g [mm]\circ f)(x_{1})[/mm] = (g [mm]\circ f)(x_{2}).[/mm]

Das hat nichts mit speziellen Voraussetzungen zu tun.
Wenn die Argumente gleich sind, sind bei Funktionen immer die Funktionswerte gleich.

>  
> Da g: Y [mm]\rightarrow[/mm] Z eine Abbildung von Y nach Z und
>  [mm]g(y_{1}), g(y_{2}) \in[/mm] Z.

Alles, was Du bis hierher getan hast, ist zwar wichtig für Dich, Du brauchst es im Beweis jedoch nicht mit hinzuschreiben.


So, jetzt beginnt der
Beweis:

>  
> Seien [mm]y_{1}, y_{2} \in[/mm] Y mit [mm]g(y_{1})[/mm] = [mm]g(y_{2}).[/mm]
>
> zu zeigen:
>
> [mm]y_{1}[/mm] = [mm]y_{2}[/mm]

Genau.

>  
> Da f:X [mm]\rightarrow[/mm] Y surjektiv,

gibt es zu [mm] y_1, y_2\in [/mm] Y passende [mm] x_1,x_2\in [/mm] X mit
[mm] f(x_1)=y_1 [/mm] und [mm] f(x_2)=y_2. [/mm]

Also gilt

>  
> [mm]g(f(x_{1})[/mm] [mm] =g(f(x_{2}) [/mm]

<==> [mm] (g\circ f)(x_1)=(g\circ f)(x_2). [/mm]

Aufgrund der Injektivität von [mm] g\circ [/mm] f folgt  ...

Also ist [mm] f(x_1)= f(x_2), [/mm] und somit

>
> [mm]y_{1}[/mm] = [mm]y_{2}[/mm]



>  
> Bsp.:
>  
> für Abbildung f und g:
>  
> g: [mm]\IR \rightarrow \IR_{\ge 0}[/mm]     g(x) = [mm]x^{2}[/mm]
>  
> f: [mm]\IR \ge[/mm] 0 [mm]\rightarrow \IR[/mm]     f(x) = [mm]\sqrt{x}[/mm]
>  
> (g [mm]\circ[/mm] f): [mm]\IR \rightarrow \IR[/mm]

Nein. [mm] g\circ [/mm] f bildet aus dem [mm] \IR_{\ge 0} [/mm] in den [mm] \IR_{\ge 0} [/mm] ab.


>     (g [mm]\circ[/mm] f)(x) =
> g(f(x))= [mm]\sqrt{x^{2}}[/mm] = |x|

es ist [mm] g(f(x))=(\wurzel{x})^2=x. [/mm]

>  
> -g: X [mm]\rightarrow[/mm] Y ist nicht surjektiv,

Du redest von g: [mm]\IR \rightarrow \IR_{\ge 0}[/mm]  mit [mm] g(x):=x^{2}? [/mm]
Die ist nicht surjektiv.

> da für alle
> [mm]x_{1}, x_{2} \in[/mm] X mit der Eigentschaft [mm]f(x_{1})[/mm] = [mm]f(x_{2})[/mm]
> nicht [mm]x_{1}[/mm] = [mm]x_{2}[/mm] folgt.

????  Die Surjektivität von g hat doch nichts mit den Eigenschaften von f zu tun. (?)

>  -Komposition ist injektiv

Das Beispiel funktioniert,
aber Deine Argumentation paßt überhaupt nicht.
Gefragt war doch nach Funktionen f,g, so daß
g [mm]\circ[/mm] f injektiv
und g nicht injektiv ist.

LG Angela


>  
> b) folgt.
>  
> mfg,
>
> zjay


Bezug
                
Bezug
Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 Do 22.11.2012
Autor: zjay

Aufgabe
Es seien f:X [mm] \rightarrow [/mm] Y und g : Y [mm] \rightarrow [/mm] Z Abbildungen.

a) Zeigen Sie: ist f surjektiv und g [mm] \circ [/mm] f injektiv, so ist g injektiv. Geben Sie Abbildungen f und g an, so dass gilt: g [mm] \circ [/mm] f ist injektiv und g ist nicht injektiv.

b) Zeigen Sie: Ist g [mm] \circ [/mm] f bijektiv, so ist f injektiv und g surjektiv. Geben Sie ein Beispiel an, so dass g [mm] \circ [/mm] f bijektiv, aber f nicht surjektiv und g nicht injektiv ist.


Hey,

auch zu dieser Aufgabe würde ich mir wünschen, dass ihr mal drüberschaut.

Meine Vorschläge

a)

Es seien f: X [mm] \rightarrow [/mm] Y und g: Y [mm] \rightarrow [/mm] Z
-Eine Abbildung heißt surjektiv, falls es zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X gibt, mit f(x) = y, d.h. falls f(X) = Y gilt.
-Eine Abbildung heißt injektiv, falls für alle x, x' [mm] \in [/mm] X gilt:
x [mm] \not= [/mm] x', so ist auch f(x) [mm] \not= [/mm] f(x').

Sei y [mm] \in [/mm] Y beliebig. Nach Voraussetzung gilt:

f:X [mm] \rightarrow [/mm] Y mit f(x) = y.

Da f:X [mm] \rightarrow [/mm] Y eine Abbildung von X nach Y ist, sind [mm] f(x_{1}), f(x_{2}) \in [/mm] Y.

Da f:X [mm] \rightarrow [/mm] Y eine Abbildung von X nach Y ist, sind [mm] f(x_{1}) [/mm] und [mm] f(x_{2}) \in [/mm] Y.
Nach Voraussetzung gilt für die Komposition mit [mm] f(x_{1}) [/mm] = [mm] f(x_{2} \in [/mm] Y :

[mm] g(f(x_{1})) [/mm] = [mm] g(f(x_{2})), [/mm] d.h. ( g [mm] \circ f)(x_{1}) [/mm] = (g [mm] \circ f)(x_{2}). [/mm]

Da g: Y [mm] \rightarrow [/mm] Z eine Abbildung von Y nach Z und
[mm] g(y_{1}), g(y_{2}) \in [/mm] Z.

Seien [mm] y_{1}, y_{2} \in [/mm] Y mit [mm] g(y_{1}) [/mm] = [mm] g(y_{2}). [/mm]

zu zeigen:

[mm] y_{1} [/mm] = [mm] y_{2} [/mm]

Da f:X [mm] \rightarrow [/mm] Y surjektiv und (g [mm] \circ f)(x_{1}) [/mm]

oh, vielen Dank, ich korrigiere das mal besser schleunigst bevor ich es abgebe.

mfg,

zjay


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]