matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungA zwischen zwei Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - A zwischen zwei Funktionen
A zwischen zwei Funktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A zwischen zwei Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Mo 15.03.2010
Autor: DerDon

Aufgabe
Gegeben ist die reelle Funktion f mit f(x) = [mm] \bruch{1}{2}*x [/mm] + [mm] \bruch{1}{2x}. [/mm]


e) Bestimme den Flächeninhalt der Figur, die vom Graphen Gf, von der Geraden mit der Gleichung [mm] y=\bruch{1}{2}x, [/mm] sowie von den beiden Geraden x = 1 und x = b für den Fall b>1 begrenzt wird.

Guten Abend.

Habe morgen Klausur und so weit alles verstanden, nur die Lösung, die wir schon gemacht haben, geht mir nicht in den Sinn.
Hier die Lösung:

[mm] A=\integral_{1}^{b}{(f(x)-\bruch{1}{2}x) dx} [/mm] // hier ist noch alles klar
= [mm] \integral_{1}^{b}{(\bruch{1}{2}x) dx} [/mm]


Meine Frage nun: Wie kommt man vom ersten auf den zweiten Schritt? Wie es danach weiter geht, verstehe ich auch, nur eben nicht diesen zweiten Schritt.

Ich hoffe, mir kann jemand dabei helfen!

        
Bezug
A zwischen zwei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mo 15.03.2010
Autor: Blech

Hi,

> Gegeben ist die reelle Funktion f mit f(x) = [mm]\bruch{1}{2}*x[/mm]
> + [mm]\bruch{1}{2x}.[/mm]
>  
>
> e) Bestimme den Flächeninhalt der Figur, die vom Graphen
> Gf, von der Geraden mit der Gleichung [mm]y=\bruch{1}{2}x,[/mm]
> sowie von den beiden Geraden x = 1 und x = b für den Fall
> b>1 begrenzt wird.
>  Guten Abend.
>  
> Habe morgen Klausur und so weit alles verstanden, nur die
> Lösung, die wir schon gemacht haben, geht mir nicht in den
> Sinn.
>  Hier die Lösung:
>  
> [mm]A=\integral_{1}^{b}{(f(x)-\bruch{1}{2}x) dx}[/mm] // hier ist
> noch alles klar
>  = [mm]\integral_{1}^{b}{(\bruch{1}{2}x) dx}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
>
> Meine Frage nun: Wie kommt man vom ersten auf den zweiten
> Schritt? Wie es danach weiter geht, verstehe ich auch, nur

Da hat irgendwer $\frac12 x$ und $\frac1{2x}$ verwechselt.

$A=\integral_{1}^{b}{(f(x)-\bruch{1}{2}x)  dx} =$
$=\int_1^b \frac1{2x}\ dx =\left\frac12\ln x\right|_{x=1}^b$

ciao
Stefan

Bezug
                
Bezug
A zwischen zwei Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 15.03.2010
Autor: DerDon

Oje, das war ich, sorry.

So ist es gemeint:

[mm] A=\integral_{1}^{b}{(f(x)-\bruch{1}{2}x) dx} [/mm]  - hier verstehe ich noch

=  [mm] \integral_{1}^{b}{(\bruch{1}{2x}) dx} [/mm]  - hier verstehe ich es nicht mehr


Wie kommt man vom ersten auf den zweiten Schritt?

Bezug
                        
Bezug
A zwischen zwei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 15.03.2010
Autor: Adamantin

Das hat er dir doch geschrieben??? Was ist denn f(x)? Und was passiert wenn du davon 1/2 x abziehst? Dann wird ja wohl das 1/2x von f(x) 0 oder nicht? Wo ist denn genau dein Problem?  ^^

Also was verstehst du an:

$ [mm] \bruch{1}{2}\cdot{}x [/mm] $ + $ [mm] \bruch{1}{2x}- \bruch{1}{2}\cdot{}x=\bruch{1}{2x} [/mm] $

nicht?

Bezug
                                
Bezug
A zwischen zwei Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 15.03.2010
Autor: DerDon

Ach herrje, ich sollte dringend aufhören zu lernen. Mach mich ja jetzt nur noch selbst verrückt...

Danke für den dezenten Hinweis. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]