matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeschränkte Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Beschränkte Folge
Beschränkte Folge < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Folge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:23 Mo 18.09.2017
Autor: djanselo

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Zeigen sie,dass die Folge $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$

Hi:

wir haben  einen Satz ,der da ist $: n \ge 2$ ,dann gilt für die $n$-te Primzahl $p_n$ die Abschätzung $\frac{1}{2}nln(n)<p_n<3nln(n)$

Nun zum Beweis von $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$
1. $\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \ge \sum_{n=2}^{N} \frac{ln(3n*ln(n))}{3n*ln(n)} = \frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n*ln(n))}{n*ln(n)} =\frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n)+ln(n)}{n*ln(n)} \ge \frac{1}{3}*\integral_{2}^{N}{\frac{ln(3x)+ln(ln(x))}{x*ln(x)} dx}=\frac{1}{3}*\integral_{2}^{N}{\frac{ln(3)+ln(x)+ln(ln(x))}{x*ln(x)} dx}$

$=\frac{1}{3}*(\integral_{2}^{N}{\frac{ln(3)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=\frac{1}{3}*( ln(3)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \ge \frac{1}{3}*( ln(3)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N))) $ damit is es nach unten beschränkt

2. $\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \le \sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{\frac{1}{2}n*ln(n)} = 2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{n*ln(n)} =2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n)+ln(n)}{n*ln(n)} \le 2*\integral_{2}^{N}{\frac{ln(\frac{1}{2}x)+ln(ln(x))}{x*ln(x)} dx}=2*\integral_{2}^{N}{\frac{ln(\frac{1}{2})+ln(x)+ln(ln(x))}{x*ln(x)} dx}$

$=2*(\integral_{2}^{N}{\frac{ln(1)-ln(2)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=2*( -ln(2)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \le 2*( -ln(2)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N))) $ damit is es nach oben beschränkt.

Das heißt,dass die Folge allgemein $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$


geht das so?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränkte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Mi 20.09.2017
Autor: donquijote

Hallo,

> Zeigen sie,dass die Folge [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>  

Hier fehlt was. Ich nehme mal an, dass gezeigt werden soll, dass die Folge beschränkt ist.

> Hi:
>  
> wir haben  einen Satz ,der da ist [mm]: n \ge 2[/mm] ,dann gilt für
> die [mm]n[/mm]-te Primzahl [mm]p_n[/mm] die Abschätzung
> [mm]\frac{1}{2}nln(n)
>  
> Nun zum Beweis von [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>  
> 1. [mm]\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \ge \sum_{n=2}^{N} \frac{ln(3n*ln(n))}{3n*ln(n)}[/mm]

Hier kannst du wegen [mm]3\ln n\ge 1[/mm] den Zähler durch [mm]\ln n[/mm] abschätzen und bekommst die deutlich einfachere Abschätzung [mm]...\ge\sum\frac{1}{3n}\ge ...[/mm]

>[mm] = \frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n*ln(n))}{n*ln(n)} =\frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n)+ln(n)}{n*ln(n)} \ge \frac{1}{3}*\integral_{2}^{N}{\frac{ln(3x)+ln(ln(x))}{x*ln(x)} dx}=\frac{1}{3}*\integral_{2}^{N}{\frac{ln(3)+ln(x)+ln(ln(x))}{x*ln(x)} dx}[/mm]

>  
> [mm]=\frac{1}{3}*(\integral_{2}^{N}{\frac{ln(3)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=\frac{1}{3}*( ln(3)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \ge \frac{1}{3}*( ln(3)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N)))[/mm]
> damit is es nach unten beschränkt
>  
> 2. [mm]\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \le \sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{\frac{1}{2}n*ln(n)} = 2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{n*ln(n)} =2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n)+ln(n)}{n*ln(n)}[/mm]

Im Zähler muss en doppelter ln stehen. Der Zähler ässt sich insgesamt durch [mm]2\ln n[/mm] nach oben abschätzen, so dass auch hier die Rechnung deutlich einfacher wird.

[mm] \le 2*\integral_{2}^{N}{\frac{ln(\frac{1}{2}x)+ln(ln(x))}{x*ln(x)} dx}=2*\integral_{2}^{N}{\frac{ln(\frac{1}{2})+ln(x)+ln(ln(x))}{x*ln(x)} dx}[/mm]

>  
> [mm]=2*(\integral_{2}^{N}{\frac{ln(1)-ln(2)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=2*( -ln(2)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \le 2*( -ln(2)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N)))[/mm]
> damit is es nach oben beschränkt.
>  
> Das heißt,dass die Folge allgemein [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>
>
> geht das so?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]